Matching Items (3)
Filtering by

Clear all filters

133843-Thumbnail Image.png
Description
Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was

Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was discovered it was too late to stop the spread and it has now been found on almost every continent. The trade of captive amphibians, used as pets, bait, and educational animals provides an opportunity to spread Bd. Because some amphibians can carry Bd without experiencing symptoms, it is possible for even healthy looking amphibians to spread the amphibian chytrid if they are moved from one location to another. Recently, a new species Batrachochytrium salamandrivorans (Bsal) was found on salamanders. Bsal was identified before it reached the United States, prompting concern regarding its spread and a call for regulation regarding the trade of captive amphibians. There are some regulations in place controlling the trade of amphibians, but they are insufficient to stop the spread of amphibian chytrid in captive populations. A 2016 law prohibits the importation of 201 salamander species. However, there is no central organization to sample or certify if amphibians are free from Bd or Bsal. Although some stores say they test for these pathogens the tests are unregulated and not reported to any central body. If the captive amphibian trade is to go disease free, there would need to be a significant push to coordinate testing efforts. To estimate Bd's prevalence in Arizona captive amphibian populations, I contacted pet stores, bait stores, and sanctuary or educational organizations to ask if I could sample their amphibian collections. My research built on the 2008 work of Angela Picco, who sampled for the amphibian chytrid in Arizona bait shops. I found that amphibian owners were often hesitant and unwilling to participate in this research opportunity. There are multiple reasons for this hesitancy including a fear of increased regulation, the potential for reporting to a government agency (USDA), or the eventual cessation of amphibian trade. The lack of willing participants suggests there may be difficulties in coordinating future sampling efforts for Bd and Bsal.
ContributorsFadlovich, Rachel Maurine (Author) / Collins, James (Thesis director) / Minteer, Ben (Committee member) / Brus, Evan (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
187832-Thumbnail Image.png
Description
Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing

Anthropogenic linear infrastructures, including roads, railways, and canals, provide important resources to humans. However, linear infrastructures can reduce landscape connectivity for many wildlife populations. To mitigate these effects, crossing structures and crossing areas can facilitate animal movement across linear infrastructures. Compared to roads, little research has evaluated the factors influencing wildlife use of crossings along major canals. The Central Arizona Project (CAP) canal is a major linear feature in Arizona, and exhibits multiple types of crossing structures and areas. In Chapter 1, the objective was to evaluate the spatial (i.e., landscape features, crossing attributes) and temporal (i.e., season, time of day) factors influencing wildlife use of overpasses (n = 43) and siphons (n = 13) along the CAP canal. Using remote wildlife cameras, 17 species were detected using overpasses and siphons along the CAP canal during one year. Animals exhibited species-specific preferences for landscape features, such as topography and vegetation, and canal crossing types, although many species decreased use of overpasses associated with human development. In Chapter 2, the objective was to evaluate the influence of human activities at overpasses on use by mule deer across multiple analytical scales. Mule deer occupancy and relative habitat use at overpasses decreased in relation to human activity, including recreation. In Chapter 3, the objective was to evaluate seasonal use of underpasses (n = 12) by mammals, reptiles, amphibians, and invertebrates. Using specialized remote wildlife cameras, 30 species were detected using underpasses along the CAP canal across three seasons, and some animals exhibited variable crossing frequencies in relation to the summer monsoon season. Overall in this project, several species of small to large-sized mammals, reptiles, amphibians, and invertebrates used a variety of crossing types, including overpasses and underpasses, along a major canal. Ultimately, this study suggests that to promote landscape connectivity for the wildlife community associated with canals and other types of linear infrastructures, it is important to provide a variety of crossing types that occur across a range of landscape characteristics.
ContributorsHamilton, Kaela M (Author) / Lewis, Jesse S (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2023
187396-Thumbnail Image.png
Description
Understanding how wildlife interact with humans and the built environment is critical as urbanization contributes to habitat change and fragmentation globally. In urban and suburban areas, wildlife and people are often in close quarters, leading to human-wildlife interactions (HWI). In the greater Phoenix Metropolitan Area, Arizona, HWI can involve reptiles

Understanding how wildlife interact with humans and the built environment is critical as urbanization contributes to habitat change and fragmentation globally. In urban and suburban areas, wildlife and people are often in close quarters, leading to human-wildlife interactions (HWI). In the greater Phoenix Metropolitan Area, Arizona, HWI can involve reptiles such as venomous (family Viperidae, e.g., rattlesnakes) and nonvenomous (family Colubridae, e.g., gophersnakes) snakes. Rattlesnake Solutions, LLC, a local business, removes and relocates snakes from homes and businesses in the Phoenix area and, as a collaborator, has provided records of snake removals. Using these records, I investigated taxa-specific habitat trends at two spatial scales. At the neighborhood scale (n = 60), I found that removals occurred in yards with abundant cover opportunities. At the landscape scale (n = 764), nonvenomous snakes were removed from areas of higher urbanization compared to venomous snakes. Clients of Rattlesnake Solutions, LLC, were asked to answer a short survey, designed by K. Larson and colleagues, regarding the circumstances of their snake removal event and their attitudes, perceptions, and experiences with snakes. I used responses from this survey (n =271) to investigate if prior experience with snakes influences reported attitudes towards snakes. Respondents with prior snake experiences reported more positive attitudes towards snakes and were more consistent across their responses than those without prior snake experiences. Continuing inquiry into the urban ecology of these snakes is important to fostering coexistence between snakes and people that call Phoenix home.
ContributorsEnloe, Annika (Author) / Bateman, Heather L (Thesis advisor) / Lewis, Jesse (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2023