Matching Items (78)
Filtering by

Clear all filters

149712-Thumbnail Image.png
Description
Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times

Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times are explored using analytical models. Combined with a new observation technique, this model places new constraints on the characteristic time delay between the formation of stars and the first type Ia supernovae. This derived delay time (500 million years) implies low-mass companions for single degenerate progenitor scenarios. In the latter portions of this dissertation, two progenitor mechanisms are simulated in detail; white dwarf collisions and mergers. From the first of these simulations, it is evident that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae. Many of the combinations of masses simulated produce sufficient quantities of 56Ni (up to 0.51 solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses produce 56Ni yields that span the entire range of supernova brightnesses, from the very dim and underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71 solar masses. The 56Ni yield in the collision simulations depends non-linearly on total system mass, mass ratio, and impact parameter. Using the same numerical tools as in the collisions examination, white dwarf mergers are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold, degenerate core surrounded by a hot accretion disk. The properties of these disks have strong implications for various viscosity treatments that have attempted to pin down the accretion times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than viscosity driven accretion. A handful of simulations also exhibit helium detonations on the surface of the primary that bear a resemblance to helium novae. Finally, some of the preliminary groundwork that has been laid for constructing a new numerical tool is discussed. This new tool advances the merger simulations further than any research group has done before, and has the potential to answer some of the lingering questions that the merger study has uncovered. The results of thermal diffusion tests using this tool have a remarkable correspondence to analytical predictions.
ContributorsRaskin, Cody (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Young, Patrick (Committee member) / Mcnamara, Allen (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2011
150214-Thumbnail Image.png
Description
Galaxies with strong Lyman-alpha (Lya) emission line (also called Lya galaxies or emitters) offer an unique probe of the epoch of reionization - one of the important phases when most of the neutral hydrogen in the universe was ionized. In addition, Lya galaxies at high redshifts are a powerful tool

Galaxies with strong Lyman-alpha (Lya) emission line (also called Lya galaxies or emitters) offer an unique probe of the epoch of reionization - one of the important phases when most of the neutral hydrogen in the universe was ionized. In addition, Lya galaxies at high redshifts are a powerful tool to study low-mass galaxy formation. Since current observations suggest that the reionization is complete by redshift z~ 6, it is therefore necessary to discover galaxies at z > 6, to use their luminosity function (LF) as a probe of reionization. I found five z = 7.7 candidate Lya galaxies with line fluxes > 7x10-18 erg/s/cm/2 , from three different deep near-infrared (IR) narrowband (NB) imaging surveys in a volume > 4x104Mpc3. From the spectroscopic followup of four candidate galaxies, and with the current spectroscopic sensitivity, the detection of only the brightest candidate galaxy can be ruled out at 5 sigma level. Moreover, these observations successfully demonstrate that the sensitivity necessary for both, the NB imaging as well as the spectroscopic followup of z~ 8 Lya galaxies can be reached with the current instrumentation. While future, more sensitive spectroscopic observations are necessary, the observed Lya LF at z = 7.7 is consistent with z = 6.6 LF, suggesting that the intergalactic medium (IGM) is relatively ionized even at z = 7.7, with neutral fraction xHI≤ 30%. On the theoretical front, while several models of Lya emitters have been developed, the physical nature of Lya emitters is not yet completely known. Moreover, multi-parameter models and their complexities necessitates a simpler model. I have developed a simple, single-parameter model to populate dark mater halos with Lya emitters. The central tenet of this model, different from many of the earlier models, is that the star-formation rate (SFR), and hence the Lya luminosity, is proportional to the mass accretion rate rather than the total halo mass. This simple model is successful in reproducing many observable including LFs, stellar masses, SFRs, and clustering of Lya emitters from z~ 3 to z~ 7. Finally, using this model, I find that the mass accretion, and hence the star-formation in > 30% of Lya emitters at z~ 3 occur through major mergers, and this fraction increases to ~ 50% at z~7.
ContributorsShet Tilvi, Vithal (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James (Committee member) / Scannapieco, Evan (Committee member) / Young, Patrick (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2011
150269-Thumbnail Image.png
Description
There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant.
ContributorsEllinger, Carola I (Author) / Young, Patrick A (Thesis advisor) / Desch, Steven J (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2011
151463-Thumbnail Image.png
Description
3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers

3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the Ni-56 production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% C-12 and 50% O-16. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 10^7 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on Ni-56 production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried out at impact parameters b=1 and b=2 (grazing). Finally, I will address future work to be performed (Chapter IV).
ContributorsHawley, Wendy Phyllis (Author) / Timmes, Frank (Thesis advisor) / Young, Patrick (Committee member) / Starrfield, Sumner (Committee member) / Fouch, Matt (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
151710-Thumbnail Image.png
Description
In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history.
ContributorsRubin, Mark (Author) / Desch, Steven J (Thesis advisor) / Sharp, Thomas (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2013
151756-Thumbnail Image.png
Description
Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to

Galaxies represent a fundamental catalyst in the ``lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d<63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be ``red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5-10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35<1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.
ContributorsRutkowski, Michael (Author) / Windhorst, Rogier A. (Thesis advisor) / Bowman, Judd (Committee member) / Butler, Nathaniel (Committee member) / Desch, Steven (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
152229-Thumbnail Image.png
Description
A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into

A significant portion of stars occur as binary systems, in which two stellar components orbit a common center of mass. As the number of known exoplanet systems continues to grow, some binary systems are now known to harbor planets around one or both stellar components. As a first look into composition of these planetary systems, I investigate the chemical compositions of 4 binary star systems, each of which is known to contain at least one planet. Stars are known to vary significantly in their composition, and their overall metallicity (represented by iron abundance, [Fe/H]) has been shown to correlate with the likelihood of hosting a planetary system. Furthermore, the detailed chemical composition of a system can give insight into the possible properties of the system's known exoplanets. Using high-resolution spectra, I quantify the abundances of up to 28 elements in each stellar component of the binary systems 16 Cyg, 83 Leo, HD 109749, and HD 195019. A direct comparison is made between each star and its binary companion to give a differential composition for each system. For each star, a comparison of elemental abundance vs. condensation temperature is made, which may be a good diagnostic of refractory-rich terrestrial planets in a system. The elemental ratios C/O and Mg/Si, crucial in determining the atmospheric composition and mineralogy of planets, are calculated and discussed for each star. Finally, the compositions and diagnostics of each binary system are discussed in terms of the known planetary and stellar parameters for each system.
ContributorsCarande, Bryce (Author) / Young, Patrick (Thesis advisor) / Patience, Jennifer L (Thesis advisor) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2013
151434-Thumbnail Image.png
Description
Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to

Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to near-infrared. In this study, I use deep HST<\italic> imaging observations of three nearby star-forming galaxies (M83, NGC 4214, and CGCG 269-049) based on the HST<\italic> observations, in order to provide to construct color-magnitude and color-color diagrams of their resolved stellar populations. First, I select 50 regions in the spiral arm and inter-arm areas of M83, and determine the age distribution of the luminous stellar populations in each region. I developed an innovative method of star-by-star correction for internal extinction to improve stellar age and mass estimates. I compare the extinction-corrected ages of the 50 regions with those determined from several independent methods. The young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with a scenario where star formation is associated with the spiral arms, and stars form primarily in star clusters before dispersing on short timescales to form the field population. I address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. The same procedure is applied to nearby starbursting dwarf NGC 4214 to study the distributions of young and old stellar populations. Lastly, I describe the analysis of the HST<\italic> and Spitzer Space Telescope<\italic> observations of the extremely metal-poor dwarf galaxy (XMPG) CGCG 269-049 at a distance of 4.96 Mpc. This galaxy is one of the most metal-poor known with 12+log(O/H)=7.43. I find clear evidence for the presence of an old stellar population in CGCG~269-049, ruling out the possibility that this galaxy is forming its first generation of stars, as originally proposed for XMPGs. This comprehensive study of resolved stellar populations in three nearby galaxies provides detailed view of the current state of star formation and evolution of galaxies.
ContributorsKim, Hwihyun (Author) / Windhorst, Rogier A (Thesis advisor) / Jansen, Rolf A (Committee member) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013