Matching Items (26)
Filtering by

Clear all filters

151463-Thumbnail Image.png
Description
3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers

3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the Ni-56 production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% C-12 and 50% O-16. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 10^7 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on Ni-56 production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried out at impact parameters b=1 and b=2 (grazing). Finally, I will address future work to be performed (Chapter IV).
ContributorsHawley, Wendy Phyllis (Author) / Timmes, Frank (Thesis advisor) / Young, Patrick (Committee member) / Starrfield, Sumner (Committee member) / Fouch, Matt (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
152707-Thumbnail Image.png
Description
As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation

As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of τ Ceti. τ Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (~2) for this star, which could lead to alterations in planetary properties. τ Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.
ContributorsPagano, Michael (Author) / Young, Patrick (Thesis advisor) / Shim, Sang-Heon (Committee member) / Patience, Jennifer (Committee member) / Desch, Steven (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
150742-Thumbnail Image.png
Description
The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas later collapses into new stars, which are able to form heavier elements due to the presence of the new elements. When we observe the abundances in a stellar regions, we are able to glean the astrophysical phenomena that occurred prior to its formation. I compile spectroscopic abundance data from 49 literature sources for 46 elements across 2836 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. I analyze the variability of the spread in abundance measurements reported for the same star by different surveys, the corresponding stellar atmosphere parameters adopted by various abundance determination methods, and the effect of normalizing all abundances to the same solar scale. The resulting abundance ratios [X/Fe] as a function of [Fe/H] are consistent with stellar nucleosynthetic processes and known Galactic thin-disk trends. I analyze the element abundances for 204 known exoplanet host-stars. In general, I find that exoplanet host-stars are not enriched more than the surrounding population of stars, with the exception of iron. I examine the stellar abundances with respect to both stellar and planetary physical properties, such as orbital period, eccentricity, planetary mass, stellar mass, and stellar color. My data confirms that exoplanet hosts are enriched in [Fe/H] but not in the refractory elements, per the self-enrichment theory for stellar composition. Lastly, I apply the Hypatia Catalog to the Catalog of Potentially Habitable Stellar Systems in order to investigate the abundances in the 1224 overlapping stars. By looking at stars similar to the Sun with respect to six bio-essential elements, I created maps that have located two ``habitability windows'' on the sky: (20.6hr, -4.8deg) and (22.6hr, -48.5deg). These windows may be of use in future targeted or beamed searches.
ContributorsHinkel, Natalie R (Author) / Timmes, Frank X (Thesis advisor) / Anbar, Ariel (Committee member) / Patience, Jennifer (Committee member) / Shumway, John (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156378-Thumbnail Image.png
Description
The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or

The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or by explosive events for high mass stars, and that gas must cool and condense to form stellar nurseries. Though the stellar lifecycle has been studied in detail, relatively little is known about the processes by which hot, diffuse gas ejected by dying stars cools and conglomerates in the interstellar medium (ISM). Much of this mystery arises because only recently have instruments with sufficient spatial and spectral resolution, sensitivity, and bandwidth become available in the terahertz (THz) frequency spectrum where these clouds peak in either thermal or line emission. In this dissertation, I will demonstrate technology advancement of instruments in this frequency regime with new characterization techniques, machining strategies, and scientific models of the spectral behavior of gas species targeted by these instruments.

I begin this work with a description of radiation pattern measurements and their use in astronomical instrument characterization. I will introduce a novel technique to measure complex (phase-sensitive) field patterns using direct detectors. I successfully demonstrate the technique with a single pixel microwave inductance detectors (MKID) experiment. I expand that work by measuring the APEX MKID (A-MKID) focal plane array of 880 pixel detectors centered at 350 GHz. In both chapters I discuss the development of an analysis pipeline to take advantage of all information provided by complex field mapping. I then discuss the design, simulation, fabrication processes, and characterization of a circular-to-rectangular waveguide transformer module integrated into a circularly symmetric feedhorn block. I conclude with a summary of this work and how to advance these technologies for future ISM studies.
ContributorsDavis, Kristina (Author) / Groppi, Christopher E (Thesis advisor) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Jellema, Willem (Committee member) / Pan, George (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2018
156743-Thumbnail Image.png
Description
Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive

Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is $\Delta_0 \approx 1.1$meV and that the density of states at the Fermi energy is $N_0 \sim 10^{10}$/eV/$\mu$m$^3$.

We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of $\Gamma_{KID} = 150~$photons/s/mA in a critically biased KID mode and a photon count rate of $\Gamma_{SPD} = 10^6~$photons/s/mA in SPD mode.

This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of $>5$MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.
ContributorsSchroeder, Edward, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Chamberlin, Ralph (Committee member) / Lindsay, Stuart (Committee member) / Newman, Nathan (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2018
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
156967-Thumbnail Image.png
Description
This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative

This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative to the currently used amplitude interferometry.

Description of a modular intensity interferometer system using commercially available single-photon detectors is given. Calculations on the sensitivity and \emph{uv}-plane coverage using these modules mounted on existing telescopes on Kitt Peak, Arizona is presented.

Determining fundamental stellar properties is essential for testing models of stellar evolution as well as for deriving physical properties of transiting exoplanets. The proposed method shows great promise in measuring the angular size of stars. Simulations indicate that it is possible to measure stellar diameters of bright stars with AB magnitude <6 with a precision of >5% in a single night of observation.

Additionally, a description is given of a custom time-to-digital converter designed to time tag individual photons from multiple single-photon detectors with high count rate, continuous data logging, and low systematics. The instrument utilizes a tapped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. The TDC is implemented on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows for continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set-up to work with up to ten independent channels. Laboratory characterization of the system, including RF, pick up and mitigation, as well as measurement of in-lab photon correlations from an incoherent light source (artificial star), are presented. Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIe 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.

Furthermore, a modified nulling interferometer with image inversion is proposed, for direct imaging of exoplanets below the canonical Rayleigh resolution limit. Image inversion interferometry relies on splitting incoming radiation from a source, either spatially rotating or reflecting the electric field from one arm of the interferometer before recombining the signals and detecting the resulting images in the two output ports with an array of high-speed single-photon detectors. Sources of incoming radiation that have cylindrical symmetry and are centered on the rotation axis will cancel in one of the output ports and add in the other output port. The ability to suppress light from a host star, as well as the ability to resolve past the Rayleigh limit, enables sensitive detection of exoplanets from a stable environment without the need for a coronagraph. The expected number of photons and the corresponding variance in the measurement for different initial contrast ratios are shown, with some first-order theoretical instrumental errors.

Lastly, preliminary results from a sizeable photometric survey are presented. This survey is used to derive bolometric flux alongside from angular size measurements and the effective stellar temperatures.
ContributorsPilyavsky, Genady (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2018
155091-Thumbnail Image.png
Description
The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in kilo-pixel arrays. I present a simple, robust design for a single receiver element that can be tessellated throughout a telescope's focal plane to make a ~1000 pixel array, which is much larger than the current state-of-the-art array, SuperCam, at 64 pixels and ~345 GHz.

While the original goal to develop receiver technologies has been accomplished, the path to this accomplishment required a far more holistic approach than originally anticipated. The goal of the present work has expended exponentially from that of KAPPas promised technical achievements. In the present work, KAPPa and its extension, I present solutions ranging from 1) the creation of large scale astronomical maps, 2) metaheuristic algorithms that solve tasks too complex for humans, and 3) detailed technical assembly of microscopic circuit components. Each part is equally integral for the realization of a ~1000 pixel THz arrays.

Our automated tuning algorithm, Alice, uses differential evolution techniques and has been extremely successful in its implementation. Alice provides good results for characterizing the extremely complex tuning topology of THz receivers. More importantly, it has accomplished rapid optimization of an entire array without human intervention. In the age of big data astronomy, I have prepared THz heterodyne receiver arrays by making cutting edge community-oriented data analysis tools for the future of large-scale discovery. I present a from-scratch reduction and analysis architecture developed for observations of 100s of square degree on-the-sky maps with SuperCam to address the gulf between observing with single dish antennas versus a truly integrated focal plane array.
ContributorsWheeler, Caleb Henry, III (Author) / Groppi, Christopher E (Thesis advisor) / Butler, Nathaniel (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Mauskopf, Philip (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016
Description
The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the

The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the companion properties and environments of low-mass systems: (1) The 245-star M-dwarfs in Multiples (MinMs) Survey, a volume-limited survey of field M-dwarf companions within 15 pc, (2) the Taurus Boundary of Stellar/Substellar (TBOSS) Survey, an ongoing study of disk properties for low-mass members within the Taurus star-forming region, and (3) spectroscopy of a brown dwarf companion using the Gemini Planet Imager (GPI).

Direct imaging of M-dwarfs is a sensitive technique to identify low-mass companions over a wide range of orbital separation, and the high proper motion of nearby M-dwarfs eases confirmation of new multiple stars. Combining AO and wide-field imaging, the MinMs Survey provides new measurements of the companion star fraction (CSF), separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs. These results demonstrate the closer orbital separations (~6 AU) and lower frequency (~23% CSF) of M-dwarf binaries relative to higher-mass stars.

From the TBOSS project, I report 885µm Atacama Large Millimeter/sub-millimeter Array continuum measurements for 24 Taurus members spanning the stellar/substellar boundary (M4-M7.75). Observations of submillimeter emission from dust grains around the lowest-mass hosts show decreasing disk dust mass for decreasing host star mass, consistent with low frequencies of giant planets around M-dwarfs. Compared to the older stellar association of Upper Scorpius, Taurus disks have a factor of four higher mass in submillimeter-sized grains.

From the GPI Exoplanet Survey, I describe near-infrared spectroscopy of an unusually red companion orbiting inside the debris disk of an F5V star. As the second brown dwarf discovered within the innermost region of a debris disk, the properties of this system offer important dynamical constraints for companion-disk interaction and a useful benchmark for brown dwarf and giant planet atmospheric study.
ContributorsWard-Duong, Kimberly Dolan (Author) / Patience, Jennifer (Thesis advisor) / Young, Patrick (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2017