Matching Items (4)
Filtering by

Clear all filters

148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
131662-Thumbnail Image.png
Description
The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å,

The purpose of this thesis is to accurately simulate the surface brightness in various spectral emission lines of the HH 901 jets in the Mystic Mountain Formation of the Carina Nebula. To accomplish this goal, we gathered relevant spectral emission line data for [Fe II] 12660 Å, Hα 6563 Å, and [S II] 6720 Å to compare with Hubble Space Telescope observations of the HH 901 jets presented in Reiter et al. (2016). We derived the emissivities for these lines from the spectral synthesis code Cloudy by Ferland et al. (2017). In addition, we used WENO simulations of density, temperature, and radiative cooling to model the jet. We found that the computed surface brightness values agreed with most of the observational surface brightness values. Thus, the 3D cylindrically symmetric simulations of surface brightness using the WENO code and Cloudy spectral emission models are accurate for jets like HH 901. After detailing these agreements, we discuss the next steps for the project, like adding an external ambient wind and performing the simulations in full 3D.
ContributorsMohan, Arun (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134898-Thumbnail Image.png
Description
The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å.

The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å. In order to do so, we used the jet model to simulate the temperature and density of the jet to match observational data by Hartigan and Morse (2007). From these results, we derived the emissivities in these emission lines using Cloudy by Ferland et al. (2013). Then we used the emissivities to determine the surface brightness of the jet in these lines. We found that the simulated surface brightness agreed with the observational surface brightness and we conclude that the model could successfully be extended to model the surface brightness of a jet.
ContributorsVargas, Perry Bialek (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12