Matching Items (8)
Filtering by

Clear all filters

133368-Thumbnail Image.png
Description
Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces

Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces can be used to date stellar events. Computational models of asymmetric supernovae provide opportunities to study the effect of explosion geometry on the SLR yields. We are most interested in the production of \iso{Al}{26}, \iso{Fe}{60}, and \iso{Ca}{41}, whose decayed products are found in our own solar system. To study the effect of explosion asymmetries in supernovae, we use TYCHO stellar evolution code, SNSHP smooth particle hydrodynamics code for 3D explosion simulations, Burn code for nucleosythesis post-processing, and Python code written to analyze the output of the post-processing code.
ContributorsJohnson, Charlotte (Author) / Young, Patrick (Thesis director) / Lunardini, Cecilia (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135330-Thumbnail Image.png
ContributorsPowell, Devon (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
Description
Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of

Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of the musical "Once on this Island" which I attempted to cast based on vocal quality and skill alone rather than taking physical characteristics into account. I researched the history and implementation of nontraditional casting, both in regards to race and other factors such as gender, socio-economic status, and disability. I also considered the legal and intellectual property challenges that nontraditional casting can pose. I concluded from this research that while nontraditional casting is only one solution to the problem, it still has a great deal of potential to create diversity in theater. For my own show, I held the initial auditions via audio recording, though the callback auditions were held in person so that I and my crew could appraise dance and acting ability. Though there were many challenges with our cast after this initial round of auditions, we were able to solidify our cast and continue through the rehearsal process. All things said, the show was very successful. It is my hope that those who were a part of the show, either as part of the production or the audience, are inspired to challenge the concept of typecasting in contemporary theater.
ContributorsBriggs, Timothy James (Author) / Yatso, Toby (Thesis director) / Dreyfoos, Dale (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor)
Created2014-12
134761-Thumbnail Image.png
Description
The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and

The LOw Frequency ARray (LOFAR) is a new and innovative radio telescope designed and constructed by the Netherlands Institute for Radio Astronomy (ASTRON). LOFAR unique capable of operating in very low frequencies (10-240 MHz) and consists of an extensive interferometry array of dipole antenna stations distributed throughout the Netherlands and Europe which allows it to achieve superb angular resolution. I investigate a part of the northern sky to search for rare radio objects such as radio haloes and radio relics that may have not been able to have been resolved by other radio telescopes.
ContributorsNguyen, Dustin Dinh (Author) / Scannapieco, Evan (Thesis director) / Butler, Nathaniel (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134589-Thumbnail Image.png
Description
Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a

Radio astronomy is a subfield in astronomy that deals with objects emitting frequencies around 10 MHz to 100 GHz. The Low Frequency Array (LOFAR) is a array of radio antennas in Europe that can reach very low frequencies, roughly between 10-240 MHz. Our project was to image and clean a field from LOFAR. The data was a 10 degree square in the sky centered at a right ascension of 10:19:34.608 and a declination +49.36.52.482. It was observed for 600 seconds at 141 MHz. To clean the field, we had to flag and remove any stations that were not responding. Using a program called FACTOR, we cleaned the image and reduced the residuals. Next we checked the validity of our sources. We checked positional offsets for our sources using the TGSS survey at 150 MHz, and corrected the declination of our LOFAR sources by a factor of 0.0002 degrees. We also fixed the LOFAR fluxes by a factor of 1.15. After this systematic check, we calculated the spectral index of our sources using the FIRST survey at 1435 MHz. We plotted this spectral index against LOFAR flux as well as redshift of the sources, and compared these to literature.
ContributorsStawinski, Stephanie Mae (Author) / Scannapieco, Evan (Thesis director) / Windhorst, Rogier (Committee member) / Karen, Olsen (Committee member) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134898-Thumbnail Image.png
Description
The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å.

The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å. In order to do so, we used the jet model to simulate the temperature and density of the jet to match observational data by Hartigan and Morse (2007). From these results, we derived the emissivities in these emission lines using Cloudy by Ferland et al. (2013). Then we used the emissivities to determine the surface brightness of the jet in these lines. We found that the simulated surface brightness agreed with the observational surface brightness and we conclude that the model could successfully be extended to model the surface brightness of a jet.
ContributorsVargas, Perry Bialek (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148230-Thumbnail Image.png
Description

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding

Stellar mass loss has a high impact on the overall evolution of a star. The amount<br/>of mass lost during a star’s lifetime dictates which remnant will be left behind and how<br/>the circumstellar environment will be affected. Several rates of mass loss have been<br/>proposed for use in stellar evolution codes, yielding discrepant results from codes using<br/>different rates. In this paper, I compare the effect of varying the mass loss rate in the<br/>stellar evolution code TYCHO on the initial-final mass relation. I computed four sets of<br/>models with varying mass loss rates and metallicities. Due to a large number of models<br/>reaching the luminous blue variable stage, only the two lower metallicity groups were<br/>considered. Their mass loss was analyzed using Python. Luminosity, temperature, and<br/>radius were also compared. The initial-final mass relation plots showed that in the 1/10<br/>solar metallicity case, reducing the mass loss rate tended to increase the dependence of final mass on initial mass. The limited nature of these results implies a need for further study into the effects of using different mass loss rates in the code TYCHO.

ContributorsAuchterlonie, Lauren (Author) / Young, Patrick (Thesis director) / Shkolnik, Evgenya (Committee member) / Starrfield, Sumner (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
164923-Thumbnail Image.png
Description
Study of the early Universe is filled with many unknowns, one of which is the nature of the very first generation of stars, otherwise designated as "Population III stars". The early Universe was composed almost entirely of cold hydrogen and helium, with only trace amounts of any heavier elements. As

Study of the early Universe is filled with many unknowns, one of which is the nature of the very first generation of stars, otherwise designated as "Population III stars". The early Universe was composed almost entirely of cold hydrogen and helium, with only trace amounts of any heavier elements. As such, these stars would have compositions very different from the stars we are able to observe today, which would in turn change how these stars functioned, as well as their lifespans. Population III stars are so old that the light they emitted has not yet reached us here on Earth. Yet we know they have to have existed, so how do we go about studying objects that we have not yet observed? And more importantly, is there a metallicity threshold at which stars begin to behave like the stars we observe today? These areas are where stellar modelling programs such as TYCHO8 and the Spanish Virtual Observatory's Theoretical Spectra Web Server (TSWS) come in. These programs allow astronomers to model the physics of Pop III stars. We can get a pretty good understanding of how these stars behaved, how long they lived, and the visual spectra they would have emitted. Such information is crucial to astronomers being able to search for remnants of these stars, and one day, the stars themselves.
ContributorsMena, Julian (Author) / Young, Patrick (Thesis director) / Bowman, Judd (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05