Matching Items (2)
Filtering by

Clear all filters

155153-Thumbnail Image.png
Description
Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of these transporters are implicated in hypertension, heart failure, epilepsy, and autism, making them well-established drug targets. Although experimental structures for bacterial homologs of the human Na+/H+

Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of these transporters are implicated in hypertension, heart failure, epilepsy, and autism, making them well-established drug targets. Although experimental structures for bacterial homologs of the human Na+/H+ have been obtained, the detailed mechanism for ion transport is still not well-understood. The most well-studied of these transporters, Escherichia coli NhaA, known to transport 2 H+ for every Na+ extruded, was recently shown to bind H+ and Na+ at the same binding site, for which the two ion species compete. Using molecular dynamics simulations, the work presented in this dissertation shows that Na+ binding disrupts a previously-unidentified salt bridge between two conserved residues, suggesting that one of these residues, Lys300, may participate directly in transport of H+. This work also demonstrates that the conformational change required for ion translocation in a homolog of NhaA, Thermus thermophilus NapA, thought by some to involve only small helical movements at the ion binding site, is a large-scale, rigid-body movement of the core domain relative to the dimerization domain. This elevator-like transport mechanism translates a bound Na+ up to 10 Å across the membrane. These findings constitute a major shift in the prevailing thought on the mechanism of these transporters, and serve as an exciting launchpad for new developments toward understanding that mechanism in detail.
ContributorsDotson, David L (Author) / Beckstein, Oliver (Thesis advisor) / Ozkan, Sefika B (Committee member) / Ros, Robert (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2016
187586-Thumbnail Image.png
Description
Transition metal ions such as Zn2+, Mn2+, Co2+, and Fe2+ play crucial roles in organisms from all kingdoms of life. The homeostasis of these ions is mainly regulated by a group of secondary transporters from the cation diffusion facilitator (CDF) family. The mammalian zinc transporters (ZnTs), a subfamily of CDF,

Transition metal ions such as Zn2+, Mn2+, Co2+, and Fe2+ play crucial roles in organisms from all kingdoms of life. The homeostasis of these ions is mainly regulated by a group of secondary transporters from the cation diffusion facilitator (CDF) family. The mammalian zinc transporters (ZnTs), a subfamily of CDF, have been an important target for study as they are associated with several diseases, such as diabetes, delayed growth and osteopenia, Alzheimer’s disease, and Parkinsonism. The bacterial homolog of ZnTs, YiiP, is the first CDF transporter with a determined structure and is used as a model for studying the structural and mechanistic properties of CDF transporters. On the other hand, Molecular dynamics simulation has emerged as a valuable computational tool for exploring the physical basis of biological macromolecules' structure and function with atomic precision at femtosecond resolution. This work aims to elucidate the roles of the three Zn$2+ binding sites found on each YiiP protomer and the role of protons in the transport process of CDFs, which remain under debate despite previous thermodynamic and structural studies on YiiP. Cryo-EM, microscale thermophoresis (MST) and molecular dynamics (MD) simulations were used to address these questions. With a Zn2+ model that accurately reproduces experimental structures of the binding clusters, the dynamical influence of zinc binding on the transporter was accessed through MD simulations, which was consistent with the new cryo-EM structures. Zinc binding affinities obtained through MST were used to infer the stoichiometry of Zn2+/H+ antiport in combination with a microscopic thermodynamic model and constant pH simulations. The most likely microstates of H$^+$ and Zn2+ binding indicated a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. A model describing the entire transport cycle of YiiP was finally built on these findings, providing insight into the structural and mechanistic properties of CDF transporters.
ContributorsFan, Shujie (Author) / Beckstein, Oliver (Thesis advisor) / Ozkan, Banu (Committee member) / Heyden, Matthias (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2023