Matching Items (6)
Filtering by

Clear all filters

Description
Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors

Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors thesis project explored the relation between anxiety-like behavior, as measured by activity in an open field, and conditioned place preference to methamphetamine in female versus male rats. The behavior of postpartum as well as virgin female rats was compared to that of male rats. There was not a significant difference between males and females in conditioned place preference to methamphetamine, yet females showed higher locomotor activity in response to the drug as well as increased anxiety-like behavior in open field testing as compared to males. Further study is vital to comprehending the complex mechanisms of sex differences in methamphetamine addiction.
ContributorsBaker, Allison Nicole (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Hansen, Whitney (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134718-Thumbnail Image.png
Description
Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My

Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My research focuses on defining the relationship between increased ERK/MAPK signaling and its effects on the nervous system, specifically in the context of motor learning. Motor function depends on several neuroanatomically distinct regions, especially the spinal cord, cerebellum, striatum, and cerebral cortex. We tested whether hyperactivation of ERK/MAPK specifically in the cortex was sufficient to drive changes in motor function. We used a series of genetically modified mouse models and cre-lox technology to hyperactivate ERK/MAPK in the cerebral cortex. Nex:Cre/NeuroD6:Cre was employed to express a constitutively active MEK mutation throughout all layers of the cerebral cortex from an early stage of development. RBP4:Cre, caMEK only exhibited hyper activation in cortical glutamatergic neurons responsible for cortical output (neurons in layer V of the cerebral cortex). First, the two mouse strains were tested in an open field paradigm to assess global locomotor abilities and overall fitness for fine motor tasks. Next, a skilled motor reaching task was used to evaluate motor learning capabilities. The results show that Nex:Cre/NeuroD6:Cre, caMEK mutants do not learn the motor reaching task, although they performed normally on the open field task. Preliminary results suggest RBP4:Cre, caMEK mutants exhibit normal locomotor capabilities and a partial lack of learning. The difference in motor learning capabilities might be explained by the extent of altered connectivity in different regions of the corticospinal tract. Once we have identified the neuropathological effects of various layers in the cortex we will be able to determine whether therapeutic interventions are sufficient to reverse these learning defects.
ContributorsRoose, Cassandra Ann (Author) / Newbern, Jason M. (Thesis director) / Olive, Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153854-Thumbnail Image.png
Description
Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses.

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS.
ContributorsLewis, Candace (Author) / Olive, M. Foster (Thesis advisor) / Hammer, Ronald (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
Description

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the pathway and eventually ERK1 and ERK2, the effectors of the pathway. Well-defined germline mutations resulting in hyperactive ERK1/2 signaling have been implicated in a group of neurodevelopmental disorders called RASopathies. RASopathic individuals often display features such as developmental delay, intellectual disability, cardio-facial abnormalities, and motor deficits. In addition, loss-of-function in ERK1/2 can lead to neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. To better understand the pathology of these neurodevelopmental disorders, the role of ERK1/2 must be examined during the development of specific neuronal and glial subtypes. In this study, we bred transgenic mice with conditional deletion of ERK1/2 in cholinergic neuronal populations to investigate whether ERK1/2 mediates the survival or activity of basal forebrain and striatal cholinergic neurons during postnatal development. By postnatal day 10, we found that ERK1/2 did not seem to mediate cholinergic neuron number within the basal forebrain or striatum. In addition, we showed that expression of FosB, a neuronal activity-dependent transcription factor and target of ERK1/2, was not yet observed in cholinergic neurons within either of these anatomical regions by P10. Finally, our preliminary data suggested that FosB expression within layer IV of the somatosensory cortex, a target domain for basal forebrain cholinergic projections, also did not appear to be mediated by ERK1/2 signaling. However, since cholinergic neuron development is not yet complete by P10, future work should explore whether ERK1/2 plays any role in the long-term survival and function of basal forebrain and striatal cholinergic neurons in adulthood. This will hopefully provide more insight into the pathology of neurodevelopmental disorders and inform future therapeutic strategies.

ContributorsBalasubramanian, Kavya (Author) / Newbern, Jason (Thesis director) / Velazquez, Ramon (Committee member) / Rees, Katherina (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
156920-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.
ContributorsDer-Ghazarian, Taleen (Author) / Neisewander, Janet (Thesis advisor) / Olive, Foster (Committee member) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Arizona State University (Publisher)
Created2018