Matching Items (4)
Filtering by

Clear all filters

131596-Thumbnail Image.png
Description

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their

This study aims to examine the relationship between urban densification and pedestrian thermal comfort at different times of the year, and to understand how this can impact patterns of activity in downtown areas. The focus of the research is on plazas in the urban core of downtown Tempe, given their importance to the pedestrian landscape. With that in mind, the research question for the study is: how does the microclimate of a densifying urban core affect thermal comfort in plazas at different times of the year? Based on the data, I argue that plazas in downtown Tempe are not maximally predisposed to pedestrian thermal comfort in the summer or the fall. Thus, the proposed intervention to improve thermal comfort in downtown Tempe’s plazas is the implementation of decision support tools focused on education, community engagement, and thoughtful building designs for heat safety.

ContributorsCox, Nicole (Author) / Redman, Charles (Thesis director) / Hondula, David M. (Committee member) / School of Social Transformation (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
158355-Thumbnail Image.png
Description

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT)

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT) and WBGT derived from regional weather station data. Moreover, only one study has quantified the relationship between regionally modeled and on-site measured WBGT over different athletic surfaces (natural grass, rubber track, and concrete tennis court). The current research expands on previous studies to examine how different athletic surfaces influence the thermal environment in the Phoenix Metropolitan Area using a combination of fieldwork, modeling, and statistical analysis. Meteorological data were collected from 0700–1900hr across 6 days in June and 5 days in August 2019 in Tempe, Arizona at various Sun Devil Athletics facilities. This research also explored the influence of surface temperatures on WBGT and the changes projected under a future warmer climate. Results indicate that based on American College of Sports Medicine guidelines practice would not be cancelled in June (WBGT≥32.3°C); however, in August, ~33% of practice time was lost across multiple surfaces. The second-tier recommendations (WBGT≥30.1°C) to limit intense exercise were reached an average of 7 hours each day for all surfaces in August. Further, WBGT was calculated using data from four Arizona Meteorological Network (AZMET) weather stations to provide regional WBGT values for comparison. The on-site (field/court) WBGT values were consistently higher than regional values and significantly different (p<0.05). Thus, using regionally-modeled WBGT data to guide activity or clothing modification for heat safety may lead to misclassification and unsafe conditions. Surface temperature measurements indicate a maximum temperature (170°F) occurring around solar noon, yet WBGT reached its highest level mid-afternoon and on the artificial turf surface (2–5PM). Climate projections show that WBGT values are expected to rise, further restricting the amount of practice and games than can take place outdoors during the afternoon. The findings from this study can be used to inform athletic trainers and coaches about the thermal environment through WBGT values on-field.

ContributorsGuyer, Haven Elizabeth (Author) / Vanos, Jennifer K. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020
157662-Thumbnail Image.png
Description

Environmental hazards and disaster researchers have demonstrated strong associations between sociodemographic indicators, such as age and socio-economic status (SES), and hazard exposures and health outcomes for individuals and in certain communities. At the same time, behavioral health and risk communications research has examined how individual psychology influences adaptive strategies and

Environmental hazards and disaster researchers have demonstrated strong associations between sociodemographic indicators, such as age and socio-economic status (SES), and hazard exposures and health outcomes for individuals and in certain communities. At the same time, behavioral health and risk communications research has examined how individual psychology influences adaptive strategies and behaviors in the face of hazards. However, at present, we do not understand the explanatory mechanisms that explain relationships between larger scale social structure, individual psychology, and specific behaviors that may attenuate or amplify risk. Extreme heat presents growing risks in a rapidly warming and urbanizing world. This dissertation examines the social and behavioral mechanisms that may explain inequitable health outcomes from exposure to concurrent extreme heat and electrical power failure in Phoenix, AZ and extreme heat in Detroit, MI. Exploratory analysis of 163 surveys in Phoenix, AZ showed that age, gender, and respondent’s racialized group identity did not relate to thermal discomfort and self-reported heat illness, which were only predicted by SES (StdB = -0.52, p < 0.01). Of the explanatory mechanisms tested in the study, only relative air conditioning intensity and thermal discomfort explained self-reported heat illness. Thermal discomfort was tested as both a mechanism and outcome measure. Content analysis of 40 semi-structured interviews in Phoenix, AZ revealed that social vulnerability was associated with an increase in perceived hazard severity (StdB = 0.44, p < 0.01), a decrease in perceived adaptation efficacy (StdB = -0.38, p = 0.02), and an indirect increase (through adaptive efficacy) in maladaptive intentions (StdB = 0.18, p = 0.01). Structural equation modeling of 244 surveys in Phoenix, AZ and Detroit, MI revealed that relationships between previous heat illness experience, perceived heat risk, and adaptive intentions were significantly moderated by adaptive capacity: high adaptive capacity households were more likely to undertake adaptive behaviors, and those decisions were more heavily influenced by risk perceptions and previous experiences. However, high adaptive capacity households had lower risk perceptions and fewer heat illness experiences than low adaptive capacity households. A better understanding of the mechanisms that produce social vulnerability can facilitate more salient risk messaging and more targeted public health interventions. For example, public health risk messaging that provides information on the efficacy of specific adaptations may be more likely to motivate self-protective action, and ultimately protect populations.

ContributorsChakalian, Paul Michael (Author) / Harlan, Sharon L (Thesis advisor) / Hondula, David M. (Thesis advisor) / White, Dave D (Committee member) / Arizona State University (Publisher)
Created2019