Matching Items (7)
Filtering by

Clear all filters

152318-Thumbnail Image.png
Description
This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert"

This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants.
ContributorsMallineni, Jaya Krishna (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Devarajan, Srinivasan (Committee member) / Narciso, Macia (Committee member) / Arizona State University (Publisher)
Created2013
152329-Thumbnail Image.png
Description
This study evaluates two 16 year old photovoltaic power (PV) plants to ascertain degradation rates and various failure modes which occur in a "hot-dry" climate. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors,

This study evaluates two 16 year old photovoltaic power (PV) plants to ascertain degradation rates and various failure modes which occur in a "hot-dry" climate. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The two power plants referred to as Site 4A and -4B with (1512 modules each) were initially installed on a single axis tracking system in Gilbert, Arizona for the first seven years and have been operating at their current location in Mesa, Arizona for the last nine years at fixed horizontal tilt Both sites experience hot-dry desert climate. Average degradation rate is 0.85%/year for the best modules and 1.1%/year for all the modules (excluding the safety failed modules). Primary safety failure mode is the backsheet delamination though it is small (less than 1.7%). Primary degradation mode and reliability failure mode may potentially be attributed to encapsulant browning leading to transmittance/current loss and thermo-mechanical solder bond fatigue (cell-ribbon and ribbon-ribbon) leading to series resistance increase. Average soiling loss of horizontal tilt based modules is 11.1%. About 0.5-1.7% of the modules qualify for the safety returns under the typical 20/20 warranty terms, 73-76% of the modules qualify for the warranty claims under the typical 20/20 power warranty terms and 24-26% of the modules are meeting the typical 20/20 power warranty terms.
ContributorsYedidi, Karan Rao (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Devarajan, Srinivasan (Committee member) / Narciso, Macia (Committee member) / Arizona State University (Publisher)
Created2013
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
154659-Thumbnail Image.png
Description
In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due

In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties.
ContributorsRaupp, Christopher (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
155732-Thumbnail Image.png
Description
This is a two-part thesis. Part 1 presents the seasonal and tilt angle dependence of soiling loss factor of photovoltaic (PV) modules over two years for Mesa, Arizona (a desert climatic condition). Part 2 presents the development of an indoor artificial soil deposition chamber replicating natural dew cycle.

This is a two-part thesis. Part 1 presents the seasonal and tilt angle dependence of soiling loss factor of photovoltaic (PV) modules over two years for Mesa, Arizona (a desert climatic condition). Part 2 presents the development of an indoor artificial soil deposition chamber replicating natural dew cycle. Several environmental factors affect the performance of PV systems including soiling. Soiling on PV modules results in a decrease of sunlight reaching the solar cell, thereby reducing the current and power output. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The dust particles vary from one location to the other in terms of particle size, color, and chemical composition. The thickness and properties of the soil layer determine the optical path of light through the soil/glass interface. Soil accumulation on the glass surface is also influenced by environmental factors such as dew, wind speeds and rainfall. Studies have shown that soil deposition is closely related to tilt angle and exposure period before a rain event. The first part of this thesis analyzes the reduction in irradiance transmitted to a solar cell through the air/soil/glass in comparison to a clean cell (air/glass interface). A time series representation is used to compare seasonal soiling loss factors for two consecutive years (2014-2016). The effect of tilt angle and rain events on these losses are extensively analyzed. Since soiling is a significant field issue, there is a growing need to address the problem, and several companies have come up with solutions such as anti-soiling coatings, automated cleaning systems etc. To test and validate the effectiveness of these anti-soiling coating technologies, various research institutes around the world are working on the design and development of artificial indoor soiling chambers to replicate the natural process in the field. The second part of this thesis work deals with the design and development of an indoor artificial soiling chamber that replicates natural soil deposition process in the field.
ContributorsVirkar, Shalaim (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
155828-Thumbnail Image.png
Description
Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in

Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in the United States, there are no regulations for governing the recycling of solar panels and the recycling process varies by the manufacturer. To bring in PV specific recycling regulations, whether the PV panels are toxic to the landfills, is to be determined. Per existing EPA regulations, PV panels are categorized as general waste and are subjected to a toxicity characterization leaching procedure (TCLP) to determine if it contains any toxic metals that can possibly leach into the landfill. In this thesis, a standardized procedure is developed for extracting samples from an end of life PV module. A literature review of the existing regulations in Europe and other countries is done. The sample extraction procedure is tested on a crystalline Si module to validate the method. The extracted samples are sent to an independent TCLP testing lab and the results are obtained. Image processing technique developed at ASU PRL is used to detect the particle size in a broken module and the size of samples sent is confirmed to follow the regulation.
ContributorsKrishnamurthy, Raghav (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
155871-Thumbnail Image.png
Description
Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak

Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak summer seasons due to the difference between module rated temperature of 25°C and operating temperature of 85°C. Therefore, it is critical to accurately predict the temperature of the modules so the performance can be accurately predicted. The module operating temperature is based not only on the ambient and irradiance conditions but is also based on the thermal properties of module packaging materials. One of the key packaging materials that would influence the module operating temperature is the substrate, polymer backsheet or glass. In this study, the thermal influence of three different polymer backsheet substrates and one glass substrate has been investigated through five tasks:

1. Determination and modeling of substrate or module temperature of coupons using four different substrates (three backsheet materials and one glass material).

2. Determination and modeling of cell temperature of coupons using four different substrates (three backsheet materials and one glass material)

3. Determination of temperature difference between cell and individual substrates for coupons of all four substrates

4. Determination of NOCT (nominal operating cell temperature) of coupons using all four substrate materials

5. Comparison of operating temperature difference between backsheet substrate coupons.

All these five tasks have been executed using the specially constructed one-cell coupons with identical cells but with four different substrates. For redundancy, two coupons per substrate were constructed and investigated. This study has attempted to model the effect of thermal conductivity of backsheet material on the cell and backsheet temperatures.
ContributorsNatarajan Rammohan, Balamurali (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017