Matching Items (4)
Filtering by

Clear all filters

151058-Thumbnail Image.png
Description
Development of post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) is a major health concern (5% - 50% of TBI cases). A significant problem in TBI management is the inability to predict which patients will develop PTE. Such prediction, followed by timely treatment, could be highly beneficial to TBI patients.

Development of post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) is a major health concern (5% - 50% of TBI cases). A significant problem in TBI management is the inability to predict which patients will develop PTE. Such prediction, followed by timely treatment, could be highly beneficial to TBI patients. Six male Sprague-Dawley rats were subjected to a controlled cortical impact (CCI). A 6mm piston was pneumatically driven 3mm into the right parietal cortex with velocity of 5.5m/s. The rats were subsequently implanted with 6 intracranial electroencephalographic (EEG) electrodes. Long-term (14-week) continuous EEG recordings were conducted. Using linear (coherence) and non-linear (Lyapunov exponents) measures of EEG dynamics in conjunction with measures of network connectivity, we studied the evolution over time of the functional connectivity between brain sites in order to identify early precursors of development of epilepsy. Four of the six TBI rats developed PTE 6 to 10 weeks after the initial insult to the brain. Analysis of the continuous EEG from these rats showed a gradual increase of the connectivity between critical brain sites in terms of their EEG dynamics, starting at least 2 weeks prior to their first spontaneous seizure. In contrast, for the rats that did not develop epilepsy, connectivity levels did not change, or decreased during the whole course of the experiment across pairs of brain sites. Consistent behavior of functional connectivity changes between brain sites and the "focus" (site of impact) over time was demonstrated for coherence in three out of the four epileptic and in both non-epileptic rats, while for STLmax in all four epileptic and in both non-epileptic rats. This study provided us with the opportunity to quantitatively investigate several aspects of epileptogenesis following traumatic brain injury. Our results strongly support a network pathology that worsens with time. It is conceivable that the observed changes in spatiotemporal dynamics after an initial brain insult, and long before the development of epilepsy, could constitute a basis for predictors of epileptogenesis in TBI patients.
ContributorsTobin, Edward (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
135402-Thumbnail Image.png
Description
It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.
ContributorsCarpenter, Andrea (Co-author) / Hool, Nicholas (Co-author) / Muthuswamy, Jitendran (Thesis director) / Crews, Debbie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135989-Thumbnail Image.png
Description
The research question this thesis aims to answer is whether depressive symptoms of adolescents involved in romantic relationships are related to their rejection sensitivity. It was hypothesized that adolescents who have more rejection sensitivity, indicated by a bigger P3b response, will have more depressive symptoms. This hypothesis was tested by

The research question this thesis aims to answer is whether depressive symptoms of adolescents involved in romantic relationships are related to their rejection sensitivity. It was hypothesized that adolescents who have more rejection sensitivity, indicated by a bigger P3b response, will have more depressive symptoms. This hypothesis was tested by having adolescent couples attend a lab session in which they played a Social Rejection Task while EEG data was being collected. Rejection sensitivity was measured using the activity of the P3b ERP at the Pz electrode. The P3b ERP was chosen to measure rejection sensitivity as it has been used before to measure rejection sensitivity in previous ostracism studies. Depressive symptoms were measured using the 20-item Center for Epidemiological Studies Depression Scale (CES-D, Radloff, 1977). After running a multiple regression analysis, the results did not support the hypothesis; instead, the results showed no relationship between rejection sensitivity and depressive symptoms. The results are also contrary to similar literature which typically shows that the higher the rejection sensitivity, the greater the depressive symptoms.
ContributorsBiera, Alex (Author) / Dishion, Tom (Thesis director) / Ha, Thao (Committee member) / Shore, Danielle (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
Description

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for

With millions of people living with a disease as restraining as migraines, there are no ways to diagnose them before they occur. In this study, a migraine model using nitroglycerin is used in rats to study the awake brain activity during the migraine state. In an attempt to search for a biomarker for the migraine state, we found multiple deviations in EEG brain activity across different bands. Firstly, there was a clear decrease in power in the delta, beta, alpha, and theta bands. A slight increase in power in the gamma and high frequency bands was also found, which is consistent with other pain-related studies12. Additionally, we searched for a decreased pain threshold in this deviation, in which we concluded that more data analysis is needed to eliminate the multiple potential noise influxes throughout each dataset. However, with this study we did find a clear change in brain activity, but a more detailed analysis will narrow down what this change could mean and how it impacts the migraine state.

ContributorsStrambi, McKenna (Author) / Muthuswamy, Jitendran (Thesis director) / Greger, Bradley (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05