Matching Items (5)
Filtering by

Clear all filters

134293-Thumbnail Image.png
Description
Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being

Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being subjective, unreliable, inaccurate, and susceptible to deliberate manipulation. Furthermore, critics also believe that the administrator of the test also influences the outcome as well. As a result, the polygraph machine, the contemporary device used for lie detection, has come under scrutiny when used as evidence in the courts. The purpose of this study is to use three entirely different tools and concepts to determine whether eye tracking systems, electroencephalogram (EEG), and Facial Expression Emotion Analysis (FACET) are reliable tools for lie detection. This study found that certain constructs such as where the left eye is looking at in regard to its usual position and engagement levels in eye tracking and EEG respectively could distinguish between truths and lies. However, the FACET proved the most reliable tool out of the three by providing not just one distinguishing variable but seven, all related to emotions derived from movements in the facial muscles during the present study. The emotions associated with the FACET that were documented to possess the ability to distinguish between truthful and lying responses were joy, anger, fear, confusion, and frustration. In addition, an overall measure of the subject's neutral and positive emotional expression were found to be distinctive factors. The implications of this study and future directions are discussed.
ContributorsSeto, Raymond Hua (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135989-Thumbnail Image.png
Description
The research question this thesis aims to answer is whether depressive symptoms of adolescents involved in romantic relationships are related to their rejection sensitivity. It was hypothesized that adolescents who have more rejection sensitivity, indicated by a bigger P3b response, will have more depressive symptoms. This hypothesis was tested by

The research question this thesis aims to answer is whether depressive symptoms of adolescents involved in romantic relationships are related to their rejection sensitivity. It was hypothesized that adolescents who have more rejection sensitivity, indicated by a bigger P3b response, will have more depressive symptoms. This hypothesis was tested by having adolescent couples attend a lab session in which they played a Social Rejection Task while EEG data was being collected. Rejection sensitivity was measured using the activity of the P3b ERP at the Pz electrode. The P3b ERP was chosen to measure rejection sensitivity as it has been used before to measure rejection sensitivity in previous ostracism studies. Depressive symptoms were measured using the 20-item Center for Epidemiological Studies Depression Scale (CES-D, Radloff, 1977). After running a multiple regression analysis, the results did not support the hypothesis; instead, the results showed no relationship between rejection sensitivity and depressive symptoms. The results are also contrary to similar literature which typically shows that the higher the rejection sensitivity, the greater the depressive symptoms.
ContributorsBiera, Alex (Author) / Dishion, Tom (Thesis director) / Ha, Thao (Committee member) / Shore, Danielle (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
Description

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of auditory attention to achieve this same goal with noninvasive electroencephalographic (EEG) methods. Five human participants participated in an auditory attention task. Participants listened to a series of four syllables followed by a fifth syllable (probe syllable). Participants were instructed to indicate whether or not the probe syllable was one of the four syllables played immediately before the probe syllable. Trials of this task were separated into conditions of playing the syllables in silence (Signal) and in background noise (Signal With Noise), and both behavioral and EEG data were recorded. EEG signals were analyzed with event-related potential and time-frequency analysis methods. The behavioral data indicated that participants performed better on the task during the “Signal” condition, which aligns with the challenges demonstrated in the cocktail party effect. The EEG analysis showed that the alpha band’s (9-13 Hz) inter-trial coherence could potentially indicate characteristics of the attended speech signal. These preliminary results suggest that EEG time-frequency analysis has the potential to reveal the neural signatures of auditory attention, which may allow for the design of a noninvasive, EEG-based hearing aid.

ContributorsLaBine, Alyssa (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
131951-Thumbnail Image.png
Description
Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven

Previous research has showed that auditory modulation may be affected by pure tone
stimuli played prior to the onset of speech production. In this experiment, we are examining the
specificity of the auditory stimulus by implementing congruent and incongruent speech sounds in
addition to non-speech sound. Electroencephalography (EEG) data was recorded for eleven adult
subjects in both speaking (speech planning) and silent reading (no speech planning) conditions.
Data analysis was accomplished manually as well as via generation of a MATLAB code to
combine data sets and calculate auditory modulation (suppression). Results of the P200
modulation showed that modulation was larger for incongruent stimuli than congruent stimuli.
However, this was not the case for the N100 modulation. The data for pure tone could not be
analyzed because the intensity of this stimulus was substantially lower than that of the speech
stimuli. Overall, the results indicated that the P200 component plays a significant role in
processing stimuli and determining the relevance of stimuli; this result is consistent with role of
P200 component in high-level analysis of speech and perceptual processing. This experiment is
ongoing, and we hope to obtain data from more subjects to support the current findings.
ContributorsTaylor, Megan Kathleen (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131570-Thumbnail Image.png
Description
Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies

Transcranial Current Stimulation (TCS) is a long-established method of modulating neuronal activity in the brain. One type of this stimulation, transcranial alternating current stimulation (tACS), is able to entrain endogenous oscillations and result in behavioral change. In the present study, we used five stimulation conditions: tACS at three different frequencies (6Hz, 12Hz, and 22Hz), transcranial random noise stimulation (tRNS), and a no-stimulation sham condition. In all stimulation conditions, we recorded electroencephalographic data to investigate the link between different frequencies of tACS and their effects on brain oscillations. We recruited 12 healthy participants. Each participant completed 30 trials of the stimulation conditions. In a given trial, we recorded brain activity for 10 seconds, stimulated for 12 seconds, and recorded an additional 10 seconds of brain activity. The difference between the average oscillation power before and after a stimulation condition indicated change in oscillation amplitude due to the stimulation. Our results showed the stimulation conditions entrained brain activity of a sub-group of participants.
ContributorsChernicky, Jacob Garrett (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05