Matching Items (15)
Filtering by

Clear all filters

151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013
153292-Thumbnail Image.png
Description
Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal

Biogenic silica nanostructures, derived from diatoms, possess highly ordered porous hierarchical nanostructures and afford flexibility in design in large part due to the availability of a great variety of shapes, sizes, and symmetries. These advantages have been exploited for study of transport phenomena of ions and molecules towards the goal of developing ultrasensitive and selective filters and biosensors. Diatom frustules give researchers many inspiration and ideas for the design and production of novel nanostructured materials. In this doctoral research will focus on the following three aspects of biogenic silica: 1) Using diatom frustule as protein sensor. 2) Using diatom nanostructures as template to fabricate nano metal materials. 3) Using diatom nanostructures to fabricate hybrid platform.

Nanoscale confinement biogenetic silica template-based electrical biosensor assay offers the user the ability to detect and quantify the biomolecules. Diatoms have been demonstrated as part of a sensor. The sensor works on the principle of electrochemical impedance spectroscopy. When specific protein biomarkers from a test sample bind to corresponding antibodies conjugated to the surface of the gold surface at the base of each nanowell, a perturbation of electrical double layer occurs resulting in a change in the impedance.

Diatoms are also a new source of inspiration for the design and fabrication of nanostructured materials. Template-directed deposition within cylindrical nanopores of a porous membrane represents an attractive and reproducible approach for preparing metal nanopatterns or nanorods of a variety of aspect ratios. The nanopatterns fabricated from diatom have the potential of the metal-enhanced fluorescence to detect dye-conjugated molecules.

Another approach presents a platform integrating biogenic silica nanostructures with micromachined silicon substrates in a micro
ano hybrid device. In this study, one can take advantages of the unique properties of a marine diatom that exhibits nanopores on the order of 40 nm in diameter and a hierarchical structure. This device can be used to several applications, such as nano particles separation and detection. This platform is also a good substrate to study cell growth that one can observe the reaction of cell growing on the nanostructure of frustule.
ContributorsLin, Kai-Chun (Author) / Ramakrishna, B.L. (Thesis advisor) / Goryll, Michael (Thesis advisor) / Dey, Sandwip (Committee member) / Prasad, Shalini (Committee member) / Arizona State University (Publisher)
Created2014
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
149962-Thumbnail Image.png
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
150540-Thumbnail Image.png
Description
In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research contest in (2009) and has been granted a patent (WO 2010/030874 A1). In addition, other work related to conductive polymer junctions and their sensing capabilities has been published in Applied Physics Letters (2005) and IEEE sensors journal (2008).
ContributorsDiaz Aguilar, Alvaro (Author) / Tao, Nongjian (Thesis advisor) / Tsui, Raymond (Committee member) / Barnaby, Hugh (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
153903-Thumbnail Image.png
Description
In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage

In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability.

The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.

By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
ContributorsFirth, Peter (Author) / Holman, Zachary C (Thesis advisor) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
156655-Thumbnail Image.png
Description
The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers.

This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide templates, aluminum nanodisc narrow-band absorbers were fabricated. A metrology instrument to measure the reflectance and transmittance of micro-scale samples was also developed and used to measure the reflectance of the aluminum nanodisc absorbers (220 µm diameter area). Tuning of the resonance wavelengths of these absorbers can be achieved through changing their geometry. Broadband absorption can be achieved by using a combination of geometries for these metamaterials which would facilitate their use as solar absorbers.

Recently, solar energy harvesting has become a topic of considerable research investigation due to it being an environmentally conscious alternative to fossil fuels. The next section discusses the steady-state temperature measurement of a lab-scale multilayer solar absorber, named metafilm. A lab-scale experimental setup is developed to characterize the solar thermal performance of selective solar absorbers. Under a concentration factor of 20.3 suns, a steady-state temperature of ~500 degrees Celsius was achieved for the metafilm compared to 375 degrees Celsius for a commercial black absorber under the same conditions. Thermal durability testing showed that the metafilm could withstand up to 700 degrees Celsius in vacuum conditions and up to 400 degrees Celsius in atmospheric conditions with little degradation of its optical and radiative properties. Moreover, cost analysis of the metafilm found it to cost significantly less ($2.22 per square meter) than commercial solar coatings ($5.41-100 per square meter).

Finally, this dissertation concludes with recommendations for further studies like using these selective metamaterials and metafilms as absorbers and emitters and using the aluminum nanodiscs on glass as selective filters for photovoltaic cells to enhance solar thermophotovoltaic energy conversion.
ContributorsAlshehri, Hassan (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
155223-Thumbnail Image.png
Description
Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative

Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative approaches are employed to overcome the lattice-mismatch issues. i) By taking advantage of nanowires or nanobelts techniques, flexibility in bandgap engineering has been greatly expanded, resulting in the nanolasers with wide wavelength coverage and tunability. Simultaneous two-color lasing in green and red is firstly achieved from monolithic cadmium sulfide selenide nanosheets. The wavelength separation is up to 97 nm at room temperature, larger than the gain bandwidth of a single semiconductor material in the visible wavelength range. The strategies adopted for two-color lasers eventually leads to the realization of simultaneous red, green and blue lasing and white lasing from a single zinc cadmium sulfide selenide nanosheet with color tunability in the full visible range, making a major milestone in the ultimate solution of laser illumination and laser display. In addition, with the help of nanowire techniques, material emission has been extended to mid-infrared range, enabling lasing at ~3µm from single lead sulfide subwavelength wires at 180 K. The cavity volume of the subwavelength laser is down to 0.44 λ3 and the wavelength tuning range is over 270 nm through the thermo-optic mechanism, exhibiting considerable potentials for on-chip applications in mid-infrared wavelength ranges. ii) By taking advantage of membrane transfer techniques, heterogeneous integration of compound semiconductor and waveguide material becomes possible, enabling the successful fabrication of membrane based nano-ring lasers on a dielectric substrate. Thin membranes with total thickness of ~200nm are first released from the original growth substrate and then transferred onto a receiving substrate through a generally applicable membrane transfer method. Nano-ring arrays are then defined by photolithography with an individual radius of 750 nm and a radial thickness of 400-500 nm. As a result, single mode lasing is achieved on individual nano-ring lasers at ~980 nm with cavity volumes down to 0.24 λ3, providing a general avenue for future heterogeneous integration of nanolasers on silicon substrates.
ContributorsFan, Fan (Author) / Ning, Cun-Zheng (Thesis advisor) / Balanis, Constantine A (Committee member) / Palais, Joseph C. (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016