Matching Items (5)
Filtering by

Clear all filters

150198-Thumbnail Image.png
Description
In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also

In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also presented. Using these methods, the resistivity of self-assembled endotaxial FeSi2 nanowires (NWs) on Si(110) was measured. The resistivity was found to vary inversely with NW width, being rhoNW = 200 uOhm cm at 12 nm and 300 uOhm cm at 2 nm. The increase at small w is attributed to boundary scattering, and is fit to the Fuchs-Sondheimer model, yielding values of rho0 = 150 uOhm cm and lambda = 2.4 nm, for specularity parameter p = 0.5. These results are attributed to a high concentration of point defects in the FeSi2 structure, with a correspondingly short inelastic electron scattering length. It is remarkable that the defect concentration persists in very small structures, and is not changed by surface oxidation.
ContributorsTobler, Samuel (Author) / Bennett, Peter (Thesis advisor) / McCartney, Martha (Committee member) / Tao, Nongjian (Committee member) / Doak, Bruce (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2011
151315-Thumbnail Image.png
Description
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater

The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
ContributorsNichols, Patricia (Author) / Ning, Cun-Zheng (Thesis advisor) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
154831-Thumbnail Image.png
Description
This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first

This dissertation describes fundamental studies of hollow carbon nanostructures, which may be used as electrodes for practical energy storage applications such as batteries or supercapacitors. Electron microscopy is heavily utilized for the nanoscale characterization. To control the morphology of hollow carbon nanostructures, ZnO nanowires serve as sacrificial templates. The first part of this dissertation focuses on the optimization of synthesis parameters and the scale-up production of ZnO nanowires by vapor transport method. Uniform ZnO nanowires with 40 nm width can be produced by using 1100 °C reaction temperature and 20 sccm oxygen flow rate, which are the two most important parameters.

The use of ethanol as carbon source with or without water steam provides uniform carbonaceous deposition on ZnO nanowire templates. The amount of as-deposited carbonaceous material can be controlled by reaction temperature and reaction time. Due to the catalytic property of ZnO surface, the thicknesses of carbonaceous layers are typically in nanometers. Different methods to remove the ZnO templates are explored, of which hydrogen reduction at temperatures higher than 700 °C is most efficient. The ZnO templates can also be removed under ethanol environment, but the temperatures need to be higher than 850 °C for practical use.

Characterizations of hollow carbon nanofibers show that the hollow carbon nanostructures have a high specific surface area (>1100 m2/g) with the presence of mesopores (~3.5 nm). The initial data on energy storage as electrodes of electrochemical double layer capacitors show that high specific capacitance (> 220 F/g) can be obtained, which is related to the high surface area and unique porous hollow structure with a thin wall.
ContributorsSong, Yian (Author) / Liu, Jingyue (Committee member) / Smith, David (Committee member) / McCartney, Martha (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2016
157664-Thumbnail Image.png
Description
One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of direct manipulation of their individual components. Even so, for decades

One of the single-most insightful, and visionary talks of the 20th century, “There’s plenty of room at the bottom,” by Dr. Richard Feynman, represented a first foray into the micro- and nano-worlds of biology and chemistry with the intention of direct manipulation of their individual components. Even so, for decades there has existed a gulf between the bottom-up molecular worlds of biology and chemistry, and the top-down world of nanofabrication. Creating single molecule nanoarrays at the limit of diffraction could incentivize a paradigm shift for experimental assays. However, such arrays have been nearly impossible to fabricate since current nanofabrication tools lack the resolution required for precise single-molecule spatial manipulation. What if there existed a molecule which could act as a bridge between these top-down and bottom-up worlds?

At ~100-nm, a DNA origami macromolecule represents one such bridge, acting as a breadboard for the decoration of single molecules with 3-5 nm resolution. It relies on the programmed self-assembly of a long, scaffold strand into arbitrary 2D or 3D structures guided via approximately two hundred, short, staple strands. Once synthesized, this nanostructure falls in the spatial manipulation regime of a nanofabrication tool such as electron-beam lithography (EBL), facilitating its high efficiency immobilization in predetermined binding sites on an experimentally relevant substrate. This placement technology, however, is expensive and requires specialized training, thereby limiting accessibility.

The work described here introduces a method for bench-top, cleanroom/lithography-free, DNA origami placement in meso-to-macro-scale grids using tunable colloidal nanosphere masks, and organosilane-based surface chemistry modification. Bench-top DNA origami placement is the first demonstration of its kind which facilitates precision placement of single molecules with high efficiency in diffraction-limited sites at a cost of $1/chip. The comprehensive characterization of this technique, and its application as a robust platform for high-throughput biophysics and digital counting of biomarkers through enzyme-free amplification are elucidated here. Furthermore, this technique can serve as a template for the bottom-up fabrication of invaluable biophysical tools such as zero mode waveguides, making them significantly cheaper and more accessible to the scientific community. This platform has the potential to democratize high-throughput single molecule experiments in laboratories worldwide.
ContributorsShetty, Rishabh Manoj (Author) / Hariadi, Rizal F (Thesis advisor) / Gopinath, Ashwin (Committee member) / Varsani, Arvind (Committee member) / Nikkhah, Mehdi (Committee member) / Tillery, Stephen H (Committee member) / Hu, Ye (Committee member) / Arizona State University (Publisher)
Created2019