Matching Items (14)
Filtering by

Clear all filters

152962-Thumbnail Image.png
Description
This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when

This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between the tow filler and the bondline between the stringer and skin was of particular interest. Both locations are considered to be hot spots in such structural components, and failures tend to initiate from these areas. In this research, nanocomposite use was investigated as an alternative to traditional methods of suppressing delamination. The stringer was analyzed under different loading conditions and assuming different structural defects. Initial damage, defined as the first drop in the load displacement curve was considered to be a useful variable to compare the different behaviors in this study and was detected via the virtual crack closure technique (VCCT) implemented in the FE analysis.

Experiments were conducted to test T section skin/stringer specimens under pull-off loading, replicating those used in composite panels as stiffeners. Two types of designs were considered: one using pure epoxy to fill the tow region and another that used nanocomposite with 5 wt. % CNTs. The response variable in the tests was the initial damage. Detailed analyses were conducted using FEMs to correlate with the experimental data. The correlation between both the experiment and model was satisfactory. Finally, the effects of thermal cure and temperature variation on nanocomposite structure behavior were studied, and both variables were determined to influence the nanocomposite structure performance.
ContributorsHasan, Zeaid (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Rajadas, John (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
153470-Thumbnail Image.png
Description
Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index values 1.1, 1.4, 1.7 and different numbers of transparent covers (0-3). In order to accomplish the proposed method the formulation and solutions are executed using simple software MATLAB. The result demonstrates efficiency of flat plate collector increases with the increase of number of covers. The performance of collector decreases when refractive index is higher. The improved useful heat gain is obtained when number of cover used is 3 and refractive index is 1.1.
ContributorsSupriti, Shahina Parvin (Author) / Rogers, Bradley (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
156272-Thumbnail Image.png
Description
With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of the material-structure properties at various length scales. Due to the

With the maturity of advanced composites as feasible structural materials for various applications there is a critical need to solve the challenge of designing these material systems for optimal performance. However, determining superior design methods requires a deep understanding of the material-structure properties at various length scales. Due to the length-scale dependent behavior of advanced composites, multiscale modeling techniques may be used to describe the dominant mechanisms of damage and failure in these material systems. With polymer matrix fiber composites and nanocomposites it becomes essential to include even the atomic length scale, where the resin-hardener-nanofiller molecules interact, in the multiscale modeling framework. Additionally, sources of variability are also critical to be included in these models due to the important role of uncertainty in advance composite behavior. Such a methodology should be able to describe length scale dependent mechanisms in a computationally efficient manner for the analysis of practical composite structures.

In the research presented in this dissertation, a comprehensive nano to macro multiscale framework is developed for the mechanical and multifunctional analysis of advanced composite materials and structures. An atomistically informed statistical multiscale model is developed for linear problems, to estimate and scale elastic properties of carbon fiber reinforced polymer composites (CFRPs) and carbon nanotube (CNT) enhanced CFRPs using information from molecular dynamics simulation of the resin-hardener-nanofiller nanoscale system. For modeling inelastic processes, an atomistically informed coupled damage-plasticity model is developed using the framework of continuum damage mechanics, where fundamental nanoscale covalent bond disassociation information is scaled up as a continuum scale damage identifying parameter. This damage model is coupled with a nanocomposite microstructure generation algorithm to study the sub-microscale damage mechanisms in CNT/CFRP microstructures. It is further integrated in a generalized method of cells (GMC) micromechanics model to create a low-fidelity computationally efficient nonlinear multiscale method with imperfect interfaces between the fiber and matrix, where the interface behavior is adopted from nanoscale MD simulations. This algorithm is used to understand damage mechanisms in adhesively bonded composite joints as a case study for the comprehensive nano to macroscale structural analysis of practical composites structures. At each length scale sources of variability are identified, characterized, and included in the multiscale modeling framework.
ContributorsRai, Ashwin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Rajadas, John (Committee member) / Fard, Masoud Yekani (Committee member) / Arizona State University (Publisher)
Created2018
134496-Thumbnail Image.png
Description
While DNA and protein nanotechnologies are promising avenues for nanotechnology on their own, merging the two could create more diverse and functional structures. In order to create hybrid structures, the protein will have to undergo site-specific modification, such as the incorporation of an unnatural amino, p-azidophenylalanine (AzF), via Shultz amber

While DNA and protein nanotechnologies are promising avenues for nanotechnology on their own, merging the two could create more diverse and functional structures. In order to create hybrid structures, the protein will have to undergo site-specific modification, such as the incorporation of an unnatural amino, p-azidophenylalanine (AzF), via Shultz amber codon suppression method, which can then participate in click chemistry with modified DNA. These newly synthesized structures will then be able to self-assemble into higher order structures. Thus far, a surface exposed residue on the aldolase protein has been mutated into an amber stop codon. The next steps are to express the protein with the unnatural amino acid, allow it to participate in click chemistry, and visualize the hybrid structure. If the structure is correct, it will be able to self-assemble.
ContributorsAziz, Ann-Marie (Author) / Stephanopoulos, Nicholas (Thesis director) / Mills, Jeremy (Committee member) / School of Social Transformation (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154502-Thumbnail Image.png
Description
Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station,

Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station, data was gathered and analyzed for the water heaters. Performance patterns were observed that correlated to ambient conditions and functionality of the solar assisted water heater. This helped better understand how the solar water heater functioned and how it may continue to function. The testing for the solar assisted water heater was replicated with the all-electric water heater. One to one analyzes was conducted for comparison. The efficiency and advantages were displayed by the solar assisted water heater having a 61% efficiency. Performance parameters were calculated for the solar assisted water heater and it showed how accurate certified standards are. The results showed 8% difference in performance, but differed in energy savings. This further displayed the effects of uncontrollable ambient conditions and the effects of different testing conditions.
ContributorsMartínez, Luis, active 1995 (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154407-Thumbnail Image.png
Description
With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy,

With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy, wind energy and hydroelectric power. This thesis

focuses on developing a concentrating solar thermal energy unit for the application

of an on-demand hot water system with phase change material. This system already

has a prototype constructed and needs refinement in several areas in order to

increase its efficiency to determine if the system could ever reach a point of

feasibility in a residential application. Having put additional control refining

systems on the solar water heat collector, it can be deduced that the efficiency has

increased. However, due to limited testing and analysis it is undetermined just how

much the efficiency of the system has increased. At minimum, the capabilities of the

research platform have dramatically increased, allowing future research to more

accurately study the dynamics of the system as well as conduct studies in more

targeted areas of engineering. In this aspect, the thesis was successful.
ContributorsDonovan, Benjamin (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
189233-Thumbnail Image.png
Description
The biological lipid bilayer on cells or the cell membrane is a surface teeming with activity. Several membrane proteins decorate the lipid bilayer to carry out various functionalities that help a cell interact with the environment, gather resources and communicate with other cells. This provides a repertoire of biological structures

The biological lipid bilayer on cells or the cell membrane is a surface teeming with activity. Several membrane proteins decorate the lipid bilayer to carry out various functionalities that help a cell interact with the environment, gather resources and communicate with other cells. This provides a repertoire of biological structures and processes that can be mimicked and manipulated. Since its inception in the late 20th century deoxyribonucleic acid (DNA) nanotechnology has been used to create nanoscale objects that can be used for such purposes. Using DNA as the building material provides the user with a programmable and functionalizable tool box to design and demonstrate these ideas. In this dissertation, I describe various DNA nanostructures that can insert or interact with lipid bilayers for cargo transport, diagnostics and therapeutics. First, I describe a reversibly gated DNA nanopore of 20.4nm x 20.4nm cross sectional width. Controlled transport of cargoes of various sizes across a lipid bilayer through a channel formed by the DNA nanopore was demonstrated. This demonstration paves the way for a class of nanopores that can be activated by different stimuli. The membrane insertion capability of the DNA nanopore is further utilized to design a nanopore sensor that can detect oligonucleotides of a specific s equence inside a lipid vesicle. The ease with which the sensor can be modified to i dentify different diagnostic markers for disease detection was shown by designing a sensor that can identify the non small cell lung cancer marker micro ribonucleic acid -21 (miRNA21). Finally, I demonstrate the therapeutic capabilities of DNA devices with a DNA tetrabody that can recruit natural killer cells (NK cells) to target cancer cells. The DNA tetrabody functionalized with cholesterol molecules and Her2 affibody inserts into NK cell membrane leading it to Her2 positive cancer cells. This shows that inthe presence of DNA tetrabody, the NK cell activation gets accelerated.
ContributorsAbraham, Leeza (Author) / Yan, Hao (Thesis advisor) / Liu, Uan (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2023
189206-Thumbnail Image.png
Description
Exoelectrogenic organisms transfer electrons from their quinone pool to extracellular acceptors over m-scale distances through appendages known as “biological nanowires”. These structures have been described as cytochrome-rich membrane extensions or pili. However, the components and mechanisms of this long-range electron transfer remain largely unknown. This dissertation describes supramolecular assembly of

Exoelectrogenic organisms transfer electrons from their quinone pool to extracellular acceptors over m-scale distances through appendages known as “biological nanowires”. These structures have been described as cytochrome-rich membrane extensions or pili. However, the components and mechanisms of this long-range electron transfer remain largely unknown. This dissertation describes supramolecular assembly of a tetraheme cytochrome into well-defined models of microbial nanowires and uses those structures to explore the mechanisms of ultra-long-range electron transfer. Chiral-induced-spin-selectivity through the cytochrome is also demonstrated. Nanowire extensions in Shewanella oneidensis have been hypothesized to transfer electrons via electron tunneling through proteinaceous structures that reinforce π-π stacking or through electron hopping via redox cofactors found along their lengths. To provide a model to evaluate the possibility of electron hopping along micron-scale distances, the first part of this dissertation describes the construction of a two-component, supramolecular nanostructure comprised of a small tetraheme cytochrome (STC) from Shewanella oneidensis fused to a peptide domain that self-assembles with a β-fibrillizing peptide. Structural and electrical characterization shows that the self-assembled protein fibers have dimensions relevant to understanding ultralong-range electron transfer and conduct electrons along their length via a cytochrome-mediated mechanism of electron transfer. The second part of this dissertations shows that a model three-component fiber construct based on charge complementary peptides and the redox protein can also be assembled. Structural and electrical characterization of the three-component structure also demonstrates desirable dimensions and electron conductivity along the length via a cytochrome-mediated mechanism. In vivo, it has been hypothesized that cytochromes in the outer surface conduit are spin-selective. However, cytochromes in the periplasm of Shewanella oneidensis have not been shown to be spin selective, and the physiological impact of the chiral-induced-spin-selectivity (CISS) effect on microbial electron transport remains unclear. In the third part of this dissertation, investigations via spin polarization and a spin-dependent conduction study show that STC is spin selective, suggesting that spin selectivity may be an important factor in the electron transport efficiency of exoelectrogens. In conclusion, this dissertation enables a better understanding of long-range electron transfer in bacterial nanowires and bioelectronic circuitry and offers suggestions for how to construct enhanced biosensors.
ContributorsNWACHUKWU, JUSTUS NMADUKA (Author) / Jones, Anne K. (Thesis advisor) / Mills, Jeremy (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2023
171858-Thumbnail Image.png
Description
Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have been demonstrated as building blocks for molecular self-assembly of diverse

Two distinct aspects of synthetic biology were investigated: the development of viral structures for new methods of studying self-assembly and nanomanufacturing, and the designs of genetic controls systems based on controlling the secondary structure of nucleic acids. Viral structures have been demonstrated as building blocks for molecular self-assembly of diverse structures, but the ease with which viral genomes can be modified to create specific structures depends on the mechanisms by which the viral coat proteins self-assemble. The experiments conducted demonstrate how the mechanisms that guide bacteriophage lambda’s self-assembly make it a useful and flexible platform for further research into biologically enabled self-assembly. While the viral platform investigations focus on the creation of new structures, the genetic control systems research focuses on new methods for signal interpretation in biological systems. Regulators of genetic activity that operate based on the secondary structure formation of ribonucleic acid (RNA), also known as riboswitches, are genetically compact devices for controlling protein translation. The toehold switch ribodevice can be modified to enable multiplexed logical operations with RNA inputs, requiring no additional protein transcription factors to regulate activity, but they cannot receive chemical inputs. RNA sequences generated to bind to specific chemicals, known as aptamers, can be used in riboswitches to confer genetic activity upon binding their target chemical. But attempts to use aptamers for logical operations and genetic circuits are difficult to generalize due to differences in sequence and binding strength. The experiments conducted demonstrate a ribodevice structure in which aptamers can be used semi-interchangeably to translate chemical inputs into the toehold switch paradigm, marrying the programmability and orthogonality of toehold switches with the broad sensing potential of aptamer-based ribodevices.
ContributorsMcCutcheon, Griffin Cooper (Author) / Green, Alexander (Thesis advisor) / Hariadi, Rizal (Committee member) / Stephanopoulos, Nicholas (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022