Matching Items (7)
Filtering by

Clear all filters

152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
ContributorsDe La Rosa, Matthew Lee (Author) / Chen, Yinong (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2018
136572-Thumbnail Image.png
Description
Cloud computing and web services enable the creation of applications that are faster and more interconnected than traditional applications. This project explores the possible ways in which cloud computing and web services can be used to extend already existing applications by developing a data storage web service for 3D modeling

Cloud computing and web services enable the creation of applications that are faster and more interconnected than traditional applications. This project explores the possible ways in which cloud computing and web services can be used to extend already existing applications by developing a data storage web service for 3D modeling applications. The implementation of the service is described, and several example applications are shown that utilize the service. Additionally, related web based applications are discussed along with their influence on the project. The project shows the benefits that cloud-based web services can bring to 3D modeling applications, such as improved collaboration and more comprehensive history tracking.
ContributorsFerry, Mark Travis (Author) / Chen, Yinong (Thesis director) / Balasooriya, Janaka (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135148-Thumbnail Image.png
Description
\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no other programming language is. Building on the principles of Assembly level efficiency, referential integrity, and high order functionality, this language is able to produce extremely efficient code; meanwhile, programmatically defined English-based reusable syntax and a strong, static type system make \English easier to read and write than many existing programming languages. Its generalization of all language structures and components to operators leaves the language syntax open to project-specific syntactical structuring, making it more easily applicable in more cases. The thesis project requirements came in three parts: a compiler to compile \English code into NASM Assembly to produce a final program product; a standard library to define many of the basic operations of the language, including the creation of lists; and C translation library that would utilize \English properties to compile C code using the \English compiler. Though designed and partially coded, the compiler remains incomplete. The standard library, C translation library, and design of the language were completed. Additional tools regarding the language design and implementation were also created, including a Gedit syntax highlighting configuration file; usage documentation describing in a tutorial style the basic usage of the language; and more. Though the thesis project itself may be complete, the \English project will continue in order to produce a new language capable of the abilities possible with the design of this language.
ContributorsDavey, Connor (Author) / Gupta, Sandeep (Thesis director) / Bazzi, Rida (Committee member) / Calliss, Debra (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
132669-Thumbnail Image.png
Description
If you’ve ever found yourself uttering the words “Honey, I forgot the—” or “how did I miss the—" when coming home from the grocery store, then you’re not alone. This everyday problem that we disregard as part of life may not seem like much, but it is the driving force

If you’ve ever found yourself uttering the words “Honey, I forgot the—” or “how did I miss the—" when coming home from the grocery store, then you’re not alone. This everyday problem that we disregard as part of life may not seem like much, but it is the driving force behind my honors thesis.
Shopping Buddy is a complete Amazon Web Services solution to this problem which is so innate to the human condition. Utilizing Alexa to keep track of your pantry, this web application automates the daunting task of creating your shopping list, putting the power of the cloud at your fingertips while keeping your complete shopping list only a click away.
Say goodbye to the nights of spaghetti without the parmesan that you left on the store shelf or the strawberries that you forgot for the strawberry shortcake. With this application, you will no longer need to rely on your memory of what you think is in the back of your fridge nor that pesky shopping list that you always end up losing when you need it the most. Accessible from any web enabled device, Shopping Buddy has got your back through all your shopping adventures to come.
ContributorsMathews, Nicolle (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
151006-Thumbnail Image.png
Description
The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities

The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities between Java and Android, the integration of module system and service platform from OSGi to Android system attracts more and more attention. How to make OSGi run in Android is a hot topic, further, how to find a mechanism to enable communication between OSGi and Android system is a more advanced area than simply making OSGi running in Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture) and CBA (Component Based Architecture), proposed a solution on integrating Felix OSGi platform with Android system in order to build up Distributed OSGi framework between mobile phones upon XMPP protocol. And in this paper, it not only successfully makes OSGi run on Android, but also invents a mechanism that makes a seamless collaboration between these two platforms.
ContributorsDong, Xinyi (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012