Matching Items (6)
Filtering by

Clear all filters

132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134014-Thumbnail Image.png
Description
This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing demand for STEM professions and proficiency within each aspect, the education system and individual educators require lessons and modalities that motivate learning in each of these areas. Administrators and teachers need creative ways to provide effective STEM implementation. Currently, the education system as a whole lacks creative and motivating material for these four domains. Not only this, but there has been a misunderstanding in regard to what effective STEM implementation entails, as well as a dearth of classroom ready lessons for educators. As a result, this thesis project developed a way to implement STEM through the use of learning centers. Learning centers are defined as designated areas within a classroom that allow easy access to a variety of learning materials. Within these centers are activities that reinforce concepts by using inquiry-based learning. Learning centers are effective in developing additional concepts or providing students with a greater breadth of knowledge on a concept. This thesis project developed three STEM learning center activity boxes and two STEM learning center outlines. Creating effective STEM learning centers and outlines was a multistep process. The first step was to develop a 3E lesson plan for each activity. Once the lesson plans were revised and complete, the creation of the three activity boxes was next. To create the activity boxes, all the required materials and worksheets were gathered and printed. From there, the next step was to implement the learning centers in a classroom to observe the results and propose any modifications. Afterwards, a reflection detailing the results and modifications was made. In the end, the goal of this project was to develop easily implemented STEM activities for my future classroom. Coming up with a creative way to get kids curious and excited about STEM is key in building STEM awareness. Not only did my project create STEM activities I can implement, but it also allowed me the opportunity to share my activities with other teachers. As a result, influencing the spread of STEM amongst future and current teachers.
ContributorsSchott, Nicole Elizabeth (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
STEM has increasingly become a buzz word in the world of education. According to Briener, et. al. (2012), the most common perspective of STEM education is teaching the integrated disciplines of science, technology, engineering, and mathematics as "one cohesive entity" instead of as separate subjects (p. 5). Prioritizing a STEM

STEM has increasingly become a buzz word in the world of education. According to Briener, et. al. (2012), the most common perspective of STEM education is teaching the integrated disciplines of science, technology, engineering, and mathematics as "one cohesive entity" instead of as separate subjects (p. 5). Prioritizing a STEM focus is a tactic many schools are beginning to adapt and one the United States government is financially backing, contributing significantly to the popularity of the movement (Briener, et.al., 2012). Across the nation, schools are making strides towards incorporating more STEM activities, and many school districts are designating entire schools as STEM schools. These STEM schools distinguish themselves with consistent commitment and attention to aspects of the STEM fields within instruction, including research opportunities for students, 21st Century skills, and a variety of learning environments. Bridges Elementary is one such identified STEM school that exemplifies these criteria, amongst others, setting a precedent for STEM schools to come.
ContributorsFefolt, Molly Lynn (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133787-Thumbnail Image.png
Description
This paper about the Garden Grub concerns the growing Agritech industry along with exposing middle school students to STEM education. Currently over half of America's students are not prepared to be successful in our technology driven world. These students did not have the opportunity to be exposed to many Science,

This paper about the Garden Grub concerns the growing Agritech industry along with exposing middle school students to STEM education. Currently over half of America's students are not prepared to be successful in our technology driven world. These students did not have the opportunity to be exposed to many Science, Technology, Engineering, and Math related careers or majors before entering the working world and/or college. These students are unaware of the real-life applications these topics can have and will never have the chance to pursue these fields. Using the Garden Grub, students will be introduced to the world of Agritech and how traditional agriculture is changing in include more technology. The Garden Grub is designed to not only introduce students to STEM in general, but specifically the Agritech Industry. With the Garden Grub kit and instructions students will be able to construct a small device that will monitor the external temperature and the soil moisture of a plant they are growing. For future implementations of the Garden Grub, we will develop a structured lesson plan to teach the users more about the device they are building. This is so in the future users could continue their education in Agritech and STEM because they have more knowledge on the subjects From standalone testing the Garden Grub, the device was able to successfully monitor the lettuce to ensure that it grew successfully. The Garden Grub instructions and kit were tested in a fourth-grade classroom, where college volunteers worked with the students to begin to create their own device. While there was not enough time to successfully complete the product the fourth graders were more interested in STEM than when we first started. Even though they struggled in the beginning, students quickly learned basic concepts , such as +/- circuit power, transfer of data, and sensor connections. More recently we were able to go into a middle school and teach in a classroom with the students who were part of a coding elective course. Since our last outing we were able to update the user manual and prepare more ahead of time. This gave us more time to explain the concepts to the students, along with being able to successful build all of the devices. They began to think of ways that this device could be applicable to their lives along with how the Garden Grub could be improved in the future.
ContributorsWynia, Rachel Marie (Author) / Lin, Elva (Thesis director) / Eakin, Hallie (Committee member) / WPC Graduate Programs (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can allow society to improve its water usage. The project consists

Clean and accessible drinking water is a crucial and limited resource. As the world's population grows and demand increases, water resources will become more limited. This project aims to educate students on water resources, drinking water, and how biomimicry can allow society to improve its water usage. The project consists of a ten day unit plan which addresses several water topics such as: the various uses of water, water distribution, where drinking water comes from, the water treatment process, and more. After establishing background knowledge on water and surrounding issues, the students will be challenged to design a water bottle using biomimicry. Biomimicry is looking at nature to draw and inspire solutions to human problems. This unit has been optimized for use by elementary teachers. The ten day unit consists of a lesson summary, objectives, standards, and recommended activities for each day. Of the ten days, three lesson plans were fully developed using the 5E format. The research supporting this project is compiled in the following report.
ContributorsSalik, Rachael (Co-author) / Burke, Aurora (Co-author) / Walters, Molina (Thesis director) / Larson, Kelli L. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134873-Thumbnail Image.png
Description
As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands

As a Country, the United States is continually falling behind academically when compared to other Nations. Therefore, the purpose of my Honors Thesis is to enlighten others on the importance of incorporating science, technology, engineering, and mathematics (STEM) into our classrooms. When students have the chance to partake in hands on, inquiry based lessons, their new knowledge for the subject increases drastically. However, completing STEM lessons in the classroom is a challenging task. For this reason, I have designed a unit's worth of lesson plans, where the unit encompasses science, technology, engineering, and mathematics. These STEM lessons are inquiry-based so that students get an understanding that science is a learning process, not just a group of facts to be memorized. The lessons are written in the 5E format, as this format is based on the way human beings learn. I wanted to make this as easy as possible for teachers to bring inquiry-based STEM learning into the classroom. When students are allowed to take control of their own learning and make discoveries for themselves, they are going to realize the excitement that comes with STEM. This will lead more students to pursue STEM careers, thus helping bring the United States back to a competitive level academically.
ContributorsPiatak, Mary Frances (Author) / Oliver, Jill (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12