Matching Items (8)
Filtering by

Clear all filters

152636-Thumbnail Image.png
Description
Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While

Rapid and reliable separation and analysis of proteins require powerful analytical methods. The analysis of proteins becomes especially challenging when only small sample volumes are available, concomitantly with low concentrations of proteins. Time critical situations pose additional challenges. Due to these challenges, conventional macro-scale separation techniques reach their limitations. While microfluidic devices require only pL-nL sample volumes, they offer several advantages such as speed, efficiency, and high throughput. This work elucidates the capability to manipulate proteins in a rapid and reliable manner with a novel migration technique, namely dielectrophoresis (DEP). Since protein analysis can often be achieved through a combination of orthogonal techniques, adding DEP as a gradient technique to the portfolio of protein manipulation methods can extend and improve combinatorial approaches. To this aim, microfluidic devices tailored with integrated insulating obstacles were fabricated to create inhomogeneous electric fields evoking insulator-based DEP (iDEP). A main focus of this work was the development of pre-concentration devices where topological micropost arrays are fabricated using standard photo- and soft lithographic techniques. With these devices, positive DEP-driven streaming of proteins was demonstrated for the first time using immunoglobulin G (IgG) and bovine serum albumin. Experimentally observed iDEP concentrations of both proteins were in excellent agreement with positive DEP concentration profiles obtained by numerical simulations. Moreover, the micropost iDEP devices were improved by introducing nano-constrictions with focused ion beam milling with which numerical simulations suggested enhancement of the DEP effect, leading to a 12-fold increase in concentration of IgG. Additionally, concentration of β-galactosidase was observed, which seems to occur due to an interplay of negative DEP, electroosmosis, electrokinesis, diffusion, and ion concentration polarization. A detailed study was performed to investigate factors influencing protein DEP under DC conditions, including electroosmosis, electrophoresis, and Joule heating. Specifically, temperature rise within the iDEP device due to Joule heating was measured experimentally with spatial and temporal resolution by employing the thermosensitive dye Rhodamine B. Unlike DNA and cells, protein DEP behavior is not well understood to date. Therefore, this detailed study of protein DEP provides novel information to eventually optimize this protein migration method for pre-concentration, separation, and fractionation.
ContributorsNakano, Asuka (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Levitus, Marcia (Committee member) / Arizona State University (Publisher)
Created2014
157398-Thumbnail Image.png
Description
Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very important strategy for improvements in clinical application of biomarkers is

Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very important strategy for improvements in clinical application of biomarkers is separation/preconcentration, impacting the reliability, efficiency and early detection. Electrophoretic exclusion can be used to separate, purify, and concentrate biomarkers. This counterflow gradient technique exploits hydrodynamic flow and electrophoretic forces to exclude, enrich, and separate analytes. The development of this technique has evolved onto an array-based microfluidic platform which offers a greater range of geometries/configurations for optimization and expanded capabilities and applications. Toward this end of expanded capabilities, fundamental studies of subtle changes to the entrance flow and electric field configurations are investigated. Three closely related microfluidic interfaces are modeled, fabricated and tested. A charged fluorescent dye is used as a sensitive and accurate probe to test the concentration variation at these interfaces. Models and experiments focus on visualizing the concentration profile in areas of high temporal dynamics, and show strong qualitative agreement, which suggests the theoretical assessment capabilities can be used to faithfully design novel and more efficient interfaces. Microfluidic electrophoretic separation technique can be combined with electron microscopy as a protein concentration/purification step aiding in sample preparation. The integrated system with grids embedded into the microdevice reduces the amount of time required for sample preparation to less than five minutes. Spatially separated and preconcentrated proteins are transferred directly from an upstream reservoir onto grids. Dilute concentration as low as 0.005 mg/mL can be manipulated to achieve meaningful results. Selective concentration of one protein from a mixture of two proteins is also demonstrated. Electrophoretic exclusion is also used for biomarker applications. Experiments using a single biomarker are conducted to assess the ability of the microdevice for enrichment in central reservoirs. A mixture of two protein biomarkers are performed to evaluate the proficiency of the device for separations capability. Moreover, a battery is able to power the microdevice, which facilitates the future application as a portable device.
ContributorsZhu, Fanyi (Author) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
133220-Thumbnail Image.png
Description
Proteins continually and naturally incur evolutionary selection through mutagenesis that optimizes their fitness, which is primarily determined by their function. It is known that allosteric regulation alters a protein's conformational dynamics leading to functional changes. We have computationally introduced a mutation at a predicted regulatory site of a short, 46

Proteins continually and naturally incur evolutionary selection through mutagenesis that optimizes their fitness, which is primarily determined by their function. It is known that allosteric regulation alters a protein's conformational dynamics leading to functional changes. We have computationally introduced a mutation at a predicted regulatory site of a short, 46 residue-long, protein interaction module composed of a WW domain and corresponding polyproline ligand (PDB id: 1k9r). The dynamic flexibility index (DFI) was computed for the binding site of the wild type and mutant WW domains to quantify the mutations effect on the rigidity of the binding pocket. DFI is used as a metric to quantify the resilience of a given position to perturbation along the chain. Using steered molecular dynamics (SMD), we also measure the effect of the point mutation on allosteric regulation by approximating the binding free energy of the system calculated using Jarzynski's Equality. Calculation of the DFI shows that the overall flexibility of the protein complex increases as a result of the distal point mutation. Total change in DFI percentile of the binding site showed a 0.067 increase suggesting an allosteric, loss of function mutation. Furthermore, we see that the change in the binding free energy is greater for that of the mutated complex supporting the idea that an increase in flexibility is correlated to a decrease in proteinlig and binding affinity. We show that sequence mutation of an allosteric site affects the mechanical stability and functionality of the binding pocket.
ContributorsMarianchuk, Tegan (Author) / Ozkan, Sefika (Thesis director) / Ros, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2018-05
154445-Thumbnail Image.png
Description
X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel

X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm – ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm – ~20 μm crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion. Additionally, a passive mixer was created to generate unique solution concentrations within isolated nanowells to crystallize phycocyanin and lysozyme. Crystal imaging with brightfield microscopy, UV fluorescence, and SONICC coupled with numerical modeling allowed quantification of crystal growth conditions for efficient phase diagram development. The developed microfluidic tools demonstrated the capability of improving samples for protein crystallography, offering a foundation for continued development of platforms to aid protein structure determination.
ContributorsAbdallah, Bahige G (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase to a solution containing TMB and either LAF-1 or tyrosine

This qualitative study sought to investigate the potential reaction between the 3,3',5,5'-tetramethylbenzidine (TMB) radical and LAF-1 RGG, the N-terminus domain of an RNA helicase which functions as a coacervating intrinsically disordered protein. The study was performed by adding horseradish peroxidase to a solution containing TMB and either LAF-1 or tyrosine in various concentrations, and monitoring the output through UV-Vis spectroscopy. The reacted species was also analyzed via MALDI-TOF mass spectrometry. UV-Vis spectroscopic monitoring showed that in the presence of LAF-1 or tyrosine, the reaction between HRP and TMB occurred more quickly than the control, as well as in the highest concentration of LAF-1, the evolution of a peak at 482 nm. The analysis through MALDI-TOF spectrometry showed the development of a second peak likely due to the reaction between LAF-1 and TMB, as the Δ between the peaks is 229 Da and the size of the TMB species is 240 Da.

ContributorsDavis, Morgan (Author) / Ghirlanda, Giovanna (Thesis director) / Heyden, Matthias (Committee member) / Mazor, Yuval (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2022-12
171881-Thumbnail Image.png
Description
Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been employed to fractionate rod-shaped nanoparticles like Single-walled carbon nanotubes (SWNTs)

Microfluidics has enabled many biological and biochemical applications such as high-throughput drug testing or point-of-care diagnostics. Dielectrophoresis (DEP) has recently achieved prominence as a powerful microfluidic technique for nanoparticle separation. Novel electric field-assisted insulator-based dielectrophoresis (iDEP) microfluidic devices have been employed to fractionate rod-shaped nanoparticles like Single-walled carbon nanotubes (SWNTs) and manipulate biomolecules like Deoxyribonucleic acid (DNA) and proteins. This dissertation involves the development of traditional as well as 3D-printed iDEP devices for the manipulation of nm-to-µm scale analytes. First, novel iDEP microfluidic constriction-based sorting devices were developed to introduce inhomogeneous electric field gradients to fractionate SWNTs by length. SWNTs possess length-specific optical and electrical properties, expanding their potential applications for future nanoscale devices. Standard synthesis procedures yield SWNTs in large-length polydispersity and chirality. Thus, an iDEP-based fractionation tool for desired lengths of SWNTs may be beneficial. This dissertation presents the first study of DEP characterization and fractionation of SWNTs using an iDEP microfluidic device. Using this iDEP constriction sorter device, two different length distributions of SWNTs were sorted with a sorting efficiency of >90%. This study provides the fundamentals of fractionating SWNTs by length, which can help separate and purify SWNTs for future nanoscale-based applications. Manipulation of nm-scale analytes requires achieving high electric field gradients in an iDEP microfluidic device, posing one of the significant challenges for DEP applications. Introducing nm-sized constrictions in an iDEP device can help generate a higher electric field gradient. However, this requires cumbersome and expensive fabrication methods. In recent years, 3D printing has drawn tremendous attention in microfluidics, alleviating complications associated with complex fabrication methods. A high-resolution 3D-printed iDEP device was developed and fabricated for iDEP-based manipulation of analytes. A completely 3D-printed device with 2 µm post-gaps was realized, and fluorescent polystyrene (PS) beads, λ-DNA, and phycocyanin protein trapping were demonstrated. Furthermore, a nm-resolution 3D-printed iDEP device was successfully printed. In the future, these high-resolution 3D-printed devices may lead to exploring DEP characteristics of nanoscale analytes like single protein molecules and viruses. The electric field-assisted unique fractionation phenomena in microfluidic platforms will become a critical solution for nanoparticle separation and manipulating biomolecules.
ContributorsRabbani, Mohammad Towshif (Author) / Ros, Alexandra (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2022