Matching Items (6)
Filtering by

Clear all filters

152998-Thumbnail Image.png
Description
An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced

An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced by spiders (order Araneae) and silkworms (order Lepidoptera). This thesis provides an in-depth molecular-level characterization of silk fibers produced by two vastly different insects: the caddisfly larvae (order Trichoptera) and the webspinner (order Embioptera).

The molecular structure of caddisfly larval silk from the species Hesperophylax consimilis was characterized using solid-state nuclear magnetic resonance (ss-NMR) and Wide Angle X-ray Diffraction (WAXD) techniques. This insect, which typically dwells in freshwater riverbeds and streams, uses silk fibers as a strong and sticky nanoadhesive material to construct cocoons and cases out available debris. Conformation-sensitive 13C chemical shifts and 31P chemical shift anisotropy (CSA) information strongly support a unique protein motif in which phosphorylated serine- rich repeats (pSX)4 complex with di- and trivalent cations to form rigid nanocrystalline β-sheets. Additionally, it is illustrated through 31P NMR and WAXD data that these nanocrystalline structures can be reversibly formed, and depend entirely on the presence of the stabilizing cations.

Nanofiber silks produced by webspinners (order Embioptera) were also studied herein. This work addresses discrepancies in the literature regarding fiber diameters and tensile properties, revealing that the nanofibers are about 100 nm in diameter, and are stronger (around 500 MPa mean ultimate stress) than previous works suggested. Fourier-transform Infrared Spectroscopy (FT-IR), NMR and WAXD results find that approximately 70% of the highly repetitive glycine- and serine-rich protein core is composed of β-sheet nanocrystalline structures. In addition, FT-IR and Gas-chromatography mass spectroscopy (GC-MS) data revealed a hydrophobic surface coating rich in long-chain lipids. The effect of this surface coating was studied with contact angle techniques; it is shown that the silk sheets are extremely hydrophobic, yet due to the microstructural and nanostructural details of the silk surface, are surprisingly adhesive to water.
ContributorsAddison, John Bennett (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150206-Thumbnail Image.png
Description
Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding

Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding is explored using a multi-scale modeling method including (i) geometric constraint based simulations that efficiently search for native like topologies and (ii) reservoir replica exchange molecular dynamics, which identify the low free energy structures and refines these structures toward the native conformation. A test set of eight proteins and three ancestral steroid receptor proteins are folded to 2.7Å all-atom RMSD from their experimental crystal structures. Protein evolution and disease associated mutations (DAMs) are most commonly studied by in silico multiple sequence alignment methods. Here, however, the structural dynamics are incorporated to give insight into the evolution of three ancestral proteins and the mechanism of several diseases in human ferritin protein. The differences in conformational dynamics of these evolutionary related, functionally diverged ancestral steroid receptor proteins are investigated by obtaining the most collective motion through essential dynamics. Strikingly, this analysis shows that evolutionary diverged proteins of the same family do not share the same dynamic subspace. Rather, those sharing the same function are simultaneously clustered together and distant from those functionally diverged homologs. This dynamics analysis also identifies 77% of mutations (functional and permissive) necessary to evolve new function. In silico methods for prediction of DAMs rely on differences in evolution rate due to purifying selection and therefore the accuracy of DAM prediction decreases at fast and slow evolvable sites. Here, we investigate structural dynamics through computing the contribution of each residue to the biologically relevant fluctuations and from this define a metric: the dynamic stability index (DSI). Using DSI we study the mechanism for three diseases observed in the human ferritin protein. The T30I and R40G DAMs show a loss of dynamic stability at the C-terminus helix and nearby regulatory loop, agreeing with experimental results implicating the same regulatory loop as a cause in cataracts syndrome.
ContributorsGlembo, Tyler J (Author) / Ozkan, Sefika B (Thesis advisor) / Thorpe, Michael F (Committee member) / Ros, Robert (Committee member) / Kumar, Sudhir (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
133220-Thumbnail Image.png
Description
Proteins continually and naturally incur evolutionary selection through mutagenesis that optimizes their fitness, which is primarily determined by their function. It is known that allosteric regulation alters a protein's conformational dynamics leading to functional changes. We have computationally introduced a mutation at a predicted regulatory site of a short, 46

Proteins continually and naturally incur evolutionary selection through mutagenesis that optimizes their fitness, which is primarily determined by their function. It is known that allosteric regulation alters a protein's conformational dynamics leading to functional changes. We have computationally introduced a mutation at a predicted regulatory site of a short, 46 residue-long, protein interaction module composed of a WW domain and corresponding polyproline ligand (PDB id: 1k9r). The dynamic flexibility index (DFI) was computed for the binding site of the wild type and mutant WW domains to quantify the mutations effect on the rigidity of the binding pocket. DFI is used as a metric to quantify the resilience of a given position to perturbation along the chain. Using steered molecular dynamics (SMD), we also measure the effect of the point mutation on allosteric regulation by approximating the binding free energy of the system calculated using Jarzynski's Equality. Calculation of the DFI shows that the overall flexibility of the protein complex increases as a result of the distal point mutation. Total change in DFI percentile of the binding site showed a 0.067 increase suggesting an allosteric, loss of function mutation. Furthermore, we see that the change in the binding free energy is greater for that of the mutated complex supporting the idea that an increase in flexibility is correlated to a decrease in proteinlig and binding affinity. We show that sequence mutation of an allosteric site affects the mechanical stability and functionality of the binding pocket.
ContributorsMarianchuk, Tegan (Author) / Ozkan, Sefika (Thesis director) / Ros, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2018-05
155215-Thumbnail Image.png
Description
Proteins are essential for most biological processes that constitute life. The function of a protein is encoded within its 3D folded structure, which is determined by its sequence of amino acids. A variation of a single nucleotide in the DNA during transcription (nSNV) can alter the amino acid sequence (i.e.,

Proteins are essential for most biological processes that constitute life. The function of a protein is encoded within its 3D folded structure, which is determined by its sequence of amino acids. A variation of a single nucleotide in the DNA during transcription (nSNV) can alter the amino acid sequence (i.e., a mutation in the protein sequence), which can adversely impact protein function and sometimes cause disease. These mutations are the most prevalent form of variations in humans, and each individual genome harbors tens of thousands of nSNVs that can be benign (neutral) or lead to disease. The primary way to assess the impact of nSNVs on function is through evolutionary approaches based on positional amino acid conservation. These approaches are largely inadequate in the regime where positions evolve at a fast rate. We developed a method called dynamic flexibility index (DFI) that measures site-specific conformational dynamics of a protein, which is paramount in exploring mechanisms of the impact of nSNVs on function. In this thesis, we demonstrate that DFI can distinguish the disease-associated and neutral nSNVs, particularly for fast evolving positions where evolutionary approaches lack predictive power. We also describe an additional dynamics-based metric, dynamic coupling index (DCI), which measures the dynamic allosteric residue coupling of distal sites on the protein with the functionally critical (i.e., active) sites. Through DCI, we analyzed 200 disease mutations of a specific enzyme called GCase, and a proteome-wide analysis of 75 human enzymes containing 323 neutral and 362 disease mutations. In both cases we observed that sites with high dynamic allosteric residue coupling with the functional sites (i.e., DARC spots) have an increased susceptibility to harboring disease nSNVs. Overall, our comprehensive proteome-wide analysis suggests that incorporating these novel position-specific conformational dynamics based metrics into genomics can complement current approaches to increase the accuracy of diagnosing disease nSNVs. Furthermore, they provide mechanistic insights about disease development. Lastly, we introduce a new, purely sequence-based model that can estimate the dynamics profile of a protein by only utilizing coevolution information, eliminating the requirement of the 3D structure for determining dynamics.
ContributorsButler, Brandon Mac (Author) / Ozkan, S. Banu (Thesis advisor) / Vaiana, Sara (Committee member) / Ghirlanda, Giovanna (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2016
157705-Thumbnail Image.png
Description
My research centers on the design and fabrication of biomolecule-sensing devices that combine top-down and bottom-up fabrication processes and leverage the unique advantages of each approach. This allows for the scalable creation of devices with critical dimensions and surface properties that are tailored to target molecules at the nanoscale.

My

My research centers on the design and fabrication of biomolecule-sensing devices that combine top-down and bottom-up fabrication processes and leverage the unique advantages of each approach. This allows for the scalable creation of devices with critical dimensions and surface properties that are tailored to target molecules at the nanoscale.

My first project focuses on a new strategy for preparing solid-state nanopore sensors for DNA sequencing. Challenges for existing nanopore approaches include specificity of detection, controllability of translocation, and scalability of fabrication. In a new solid-state pore architecture, top-down fabrication of an initial electrode gap embedded in a sealed nanochannel is followed by feedback-controlled electrochemical deposition of metal to shrink the gap and define the nanopore size. The resulting structure allows for the use of an electric field to control the motion of DNA through the pore and the direct detection of a tunnel current through a DNA molecule.

My second project focuses on top-down fabrication strategies for a fixed nanogap device to explore the electronic conductance of proteins. Here, a metal-insulator-metal junction can be fabricated with top-down fabrication techniques, and the subsequent electrode surfaces can be chemically modified with molecules that bind strongly to a target protein. When proteins bind to molecules on either side of the dielectric gap, a molecular junction is formed with observed conductances on the order of nanosiemens. These devices can be used in applications such as DNA sequencing or to gain insight into fundamental questions such as the mechanism of electron transport in proteins.
ContributorsSadar, Joshua Stephen (Author) / Qing, Quan (Thesis advisor) / Lindsay, Stuart (Committee member) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2019
158862-Thumbnail Image.png
Description
Traditionally, allostery is perceived as the response of a catalytic pocket to perturbations induced by binding at another distal site through the interaction network in a protein, usually associated with a conformational change responsible for functional regulation. Here, I utilize dynamics-based metrics, Dynamic Flexibility Index and Dynamic Coupling Index to

Traditionally, allostery is perceived as the response of a catalytic pocket to perturbations induced by binding at another distal site through the interaction network in a protein, usually associated with a conformational change responsible for functional regulation. Here, I utilize dynamics-based metrics, Dynamic Flexibility Index and Dynamic Coupling Index to provide insight into how 3D network of interactions wire communications within a protein and give rise to the long-range dynamic coupling, thus regulating key allosteric interactions. Furthermore, I investigate its role in modulating protein function through mutations in evolution. I use Thioredoxin and β-lactamase enzymes as model systems, and show that nature exploits "hinge-shift'' mechanism, where the loss in rigidity of certain residue positions of a protein is compensated by reduced flexibility of other positions, for functional evolution. I also developed a novel approach based on this principle to computationally engineer new mutants of the promiscuous ancestral β-lactamase (i.e., degrading both penicillin and cephatoxime) to exhibit specificity only towards penicillin with a better catalytic efficiency through population shift in its native ensemble.I investigate how allosteric interactions in a protein can regulate protein interactions in a cell, particularly focusing on E. coli ribosome. I describe how mutations in a ribosome can allosterically change its associating with magnesium ions, which was further shown by my collaborators to distally impact the number of biologically active Adenosine Triphosphate molecules in a cell, thereby, impacting cell growth. This allosteric modulation via magnesium ion concentrations is coined, "ionic allostery''. I also describe, the role played by allosteric interactions to regulate information among proteins using a simplistic toy model of an allosteric enzyme. It shows how allostery can provide a mechanism to efficiently transmit information in a signaling pathway in a cell while up/down regulating an enzyme’s activity.
The results discussed here suggest a deeper embedding of the role of allosteric interactions in a protein’s function at cellular level. Therefore, bridging the molecular impact of allosteric regulation with its role in communication in cellular signaling can provide further mechanistic insights of cellular function and disease development, and allow design of novel drugs regulating cellular functions.
ContributorsModi, Tushar (Author) / Ozkan, Sefika (Thesis advisor) / Beckstein, Oliver (Committee member) / Vaiana, Sara (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2020