Matching Items (3)
Filtering by

Clear all filters

150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
ContributorsMorrison, Brian (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Shovkovy, Igor (Committee member) / Davies, Paul (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2011
154451-Thumbnail Image.png
Description
A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a

A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a butanol target and a circularly-polarized incident tagged photon beam with

energies between 0.62 and 2.93 GeV. Data are presented for the F and T polarization observables

for h meson photoproduction on the proton from W = 1.55 GeV to 1.80 GeV.

The data presented here will improve the world database and refine theoretical approaches

of nucleon structure.
ContributorsTucker, Ross (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2016
131546-Thumbnail Image.png
Description
The current observable universe is made of matter due to baryon/antibaryon asymmetry. The Deep Underground Neutrino Experiment is an international experiment through the Fermi National Accelerator Laboratory that will study neutrinos. In this study, the detection efficiency for low energy supernova neutrinos was examined in order to improve energy reconstruction

The current observable universe is made of matter due to baryon/antibaryon asymmetry. The Deep Underground Neutrino Experiment is an international experiment through the Fermi National Accelerator Laboratory that will study neutrinos. In this study, the detection efficiency for low energy supernova neutrinos was examined in order to improve energy reconstruction for neutrino energies less than 40 MeV. To do this, supernova neutrino events were simulated using the LarSoft simulation package with and without background. The ratios between the true data and reconstructed data were compared to identify the deficiencies of the detector, which were found to be low energies and high drift times. The ratio between the true and reconstructed data was improved by applying the physical limits of the detector. The efficiency of the improved ratio of the clean data was found to be 93.2% and the efficiency of the improved ratio with the data with background was 82.6%. The study suggests that a second photon detector at the far wall of the detector would help improve the resolutions at high drift times and low neutrino energies.
ContributorsProcter-Murphy, Rachel Grace (Co-author) / Procter-Murphy, Rachel (Co-author) / Ritchie, Barry (Thesis director) / LoSecco, John (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05