Matching Items (5)
Filtering by

Clear all filters

153950-Thumbnail Image.png
Description
Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model

Cosmology, carrying imprints from the entire history of the universe, has emerged as a precise observational science over the past 30 years. It can probe physics beyond the Standard Model at energy scales much higher than the weak scale. This thesis reports on some important probes of beyond standard model physics derived in a cosmological setting - (I) It is shown that primordial gravitational waves left over from inflation carry unique detectable CMB signatures for neutrino masses, axions and any other relativistic species that may have been present. (II) Higgs Inflation, the most popular and compelling inflation model with a higgs boson is studied next and it is shown that quantum effects have so far been incorrectly incorporated. A spurious gauge ambiguity arising from quantum effects enters the canonical prediction for observables in Higgs Inflation that must be addressed. (III) A new novel mechanism for generating the observed baryon asymmetry of the universe via decaying gravitinos is proposed. If the Supersymmetry (SUSY) breaking scale is high, then in the presence of R-parity violation, gravitinos can successfully reproduce the baryon asymmetry and evade all low energy constraints. (IV) The final chapter reports on a new completely general analysis of simplified models used in direct detection of dark matter. This is useful to explore what high energy physics constraints can be obtained from direct detection experiments.
ContributorsSabharwal, Subir (Author) / Krauss, Lawrence M (Thesis advisor) / Vachaspati, Tanmay (Thesis advisor) / Mauskopf, Philip D (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
154297-Thumbnail Image.png
Description
In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents.

In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents. The second chapter is then devoted to a detailed phenomenological study of the Virtual Compton Scattering (VCS) process, where a more comprehensive parametrization is suggested. In the third chapter, the renormalization kernels that enters the QCD evolution equations at twist- 4 accuracy are computed in terms of Feynman diagrams in momentum space, which can be viewed as an extension of the work by Bukhvostov, Frolov, Lipatov, and Kuraev (BKLK). The results can be used for determining the QCD background interaction for future precision measurements.
ContributorsJi, Yao, Ph. D (Author) / Belitsky, Andrei (Thesis advisor) / Lebed, Richard (Committee member) / Schmidt, Kevin E (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2016
154965-Thumbnail Image.png
Description
The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.
ContributorsHyde, Jeffrey Morgan (Author) / Vachaspati, Tanmay (Thesis advisor) / Easson, Damien (Committee member) / Belitsky, Andrei (Committee member) / Comfort, Joseph (Committee member) / Arizona State University (Publisher)
Created2016
158152-Thumbnail Image.png
Description
In this dissertation, I present the results from my recent

investigations into the interactions involving topological defects, such as

magnetic monopoles and strings, that may have been produced in the early

universe. I performed numerical studies on the interactions of twisted

monopole-antimonopole pairs in the 't Hooft-Polyakov model

In this dissertation, I present the results from my recent

investigations into the interactions involving topological defects, such as

magnetic monopoles and strings, that may have been produced in the early

universe. I performed numerical studies on the interactions of twisted

monopole-antimonopole pairs in the 't Hooft-Polyakov model for a range of

values of the scalar to vector mass ratio. Sphaleron solution predicted by

Taubes was recovered, and I mapped out its energy and size as functions of

parameters. I also looked into the production, and decay modes of $U(1)$ gauge

and global strings. I demonstrated that strings can be produced upon evolution

of gauge wavepackets defined within a certain region of parameter space. The

numerical exploration of the decay modes of cosmic string loops led to the

conclusions that string loops emit particle radiation primarily due to kink

collisions, and that their decay time due to these losses is proportional to

$L^p$, where $L$ is the loop length and $p \approx 2$. In contrast, the decay

time due to gravitational radiation scales in proportion to $L$, and I

concluded that particle emission is the primary energy loss mechanism for loops

smaller than a critical length scale, while gravitational losses dominate for

larger loops. In addition, I analyzed the decay of cosmic global string loops

due to radiation of Goldstone bosons and massive scalar ($\chi$) particles.

The length of loops I studied ranges from 200-1000 times the width of the

string core. I found that the lifetime of a loop is approximately $1.4L$. The

energy spectrum of Goldstone boson radiation has a $k^{-1}$ fall off, where $k$

is the wavenumber, and a sharp peak at $k\approx m_\chi/2$, where $m_\chi$ is

the mass of $\chi$. The latter is a new feature and implies a peak at high

energies (MeV-GeV) in the cosmological distribution of QCD axions.
ContributorsSaurabh, Ayush (Author) / Vachaspati, Tanmay (Thesis advisor) / Lebed, Richard (Committee member) / Baumgart, Matthew (Committee member) / Keeler, Cynthia (Committee member) / Arizona State University (Publisher)
Created2020
165116-Thumbnail Image.png
Description

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The goal of my thesis is to mathematically model the magnetic monopole by finding numerical solutions to the equations of motion. In my analysis, I consider four cases: kinks, cosmic strings, global monopoles, and magnetic monopoles. I will also study electromagnetic gauge fields to prepare to include gauge fields in the magnetic monopole case. Numerical solutions are found for the cosmic string and global monopole cases. As expected, the energy is high at small distance r and drops off as r goes to infinity. Currently numerical solutions are being worked towards for electromagnetic gauge fields and the magnetic monopole case.

ContributorsBrown, Taryn (Author) / Vachaspati, Tanmay (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05