Matching Items (5)
Filtering by

Clear all filters

190908-Thumbnail Image.png
Description
Advancements in three-dimensional (3D) additive manufacturing techniques have opened up new possibilities for healthcare systems and the medical industry, allowing for the realization of concepts that were once confined to theoretical discussions. Among these groundbreaking research endeavors is the development of intricate magnetic structures that can be actuated through non-invasive

Advancements in three-dimensional (3D) additive manufacturing techniques have opened up new possibilities for healthcare systems and the medical industry, allowing for the realization of concepts that were once confined to theoretical discussions. Among these groundbreaking research endeavors is the development of intricate magnetic structures that can be actuated through non-invasive methods, including electromagnetic and magnetic actuation. Magnetic actuation, in particular, offers the advantage of untethered operation. In this study, a photopolymerizable resin infused with Fe3O4 oxide nanoparticles is employed in the printing process using the micro-continuous liquid interface production technique. The objective is to optimize the manufacturing process to produce microstructures featuring smooth surfaces and reduced surface porosity, and enhanced flexibility and magnetic actuation. Various intricate structures are fabricated to validate the printing process's capabilities. Furthermore, the assessment of the flexibilty of these 3D-printed structures is conducted in the presence of an external magnetic field using a homemade bending test setup, allowing for a comprehensive characterization of these components. This research serves as a foundation for the future design and development of micro-robots using micro-continuous liquid interface production technique.
ContributorsJha, Ujjawal (Author) / Chen, Xiangfan (Thesis advisor) / Li, Xiangjia (Committee member) / Jin, Kailong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2023
193396-Thumbnail Image.png
Description
Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As the technology continues to evolve, its impact on manufacturing is

Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As the technology continues to evolve, its impact on manufacturing is expected to grow, driving further innovation and reshaping traditional production processes. Some innovation examples in this field are inspired by natural or bio-systems, such as honeycomb structures for internal morphological control to increase strength, bio-mimetic composites for scaffold structures, or shape memory materials in 4D printing for targeted drug delivery. However, the technology is limited by its ability to manipulate multiple materials, especially tuning their submicron characteristics when they show non-compatible chemical or physical features. For example, the deposition and patterning of nanoparticles with different dimensions have seen little success, except in highly precise and slow 3D printing processes like aerojet or electrohydrodynamic. Taking inspiration from the layered patterns and structures found in nature, this research aims to demonstrate the development and versatility of a newly developed ink-based composite 3D printing mechanism called multiphase direct ink writing (MDIW). The MDIW is a multi-materials extrusion system, with a unique nozzle design that can accommodate two immiscible and non-compatible polymer or nano-composite solutions as feedstock. The intricate internal structure of the nozzle enables the rearrangement of the feedstock in alternating layers (i.e., ABAB...) and multiplied within each printed line. This research will first highlight the design and development of the MDIW 3D printing mechanism, followed by laminate processing to establish the requirements of layer formation in the XY-axis and the effect of layer formation on its microstructural and mechanical properties. Next, the versatility of the mechanism is also shown through the one-step fabrication of shape memory polymers with dual stimuli responsiveness, highlighting the 4D printing capabilities. Moreover, the MDIW's capability of dual nanoparticle patterning for manufacturing multi-functional carbon-carbon composites will be highlighted. Comprehensive and in-depth studies are conducted to investigate the morphology-structure-property relationships, demonstrating potential applications in structural engineering, smart and intelligent devices, miniature robotics, and high-temperature systems.
ContributorsRavichandran, Dharneedar (Author) / Nian, Qiong (Thesis advisor) / Song, Kenan (Committee member) / Green, Matthew (Committee member) / Jin, Kailong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2024
187418-Thumbnail Image.png
Description
Stereolithography (SLA) is an innovative additive manufacturing technique that has gained immense popularity in recent times due to its ability to produce complex and precise three-dimensional objects. However, the quality of the final product depends on the stability and homogeneity of the photocurable metallic ink used, which is crucial for

Stereolithography (SLA) is an innovative additive manufacturing technique that has gained immense popularity in recent times due to its ability to produce complex and precise three-dimensional objects. However, the quality of the final product depends on the stability and homogeneity of the photocurable metallic ink used, which is crucial for manufacturing high-quality parts with good surface finish and higher density. To achieve homogeneity in the photocurable metallic resin, the study conducted on optimizing the printing ink for ultrafast layer less fabrication of 3D metal objects investigated the effectiveness of different dispersants such as KH 560, Triton X-100, BYK 2013, BYK 2030, and BYK 111. The use of dispersants plays a vital role in optimizing the ink and enhancing the surface finish and density of the final product. The rheology results showed that the appropriate dispersant has the potential to improve the properties of the printing ink and benefit the integrity of the printed green bodies and their surface finish. By using the optimized suspension, the study was able to fabricate parts with high metallic loading at an ultrafast speed using the Continuous Liquid Interface Production technique. FTIR analysis, sedimentation testing, and rheology study has been carried out which demonstrates the effects of the utilization of various dispersants optimally to improve the homogeneity and manufactured part’s integrity. Power law has been used to understand the viscosity behavior of dispersants in a photocurable ink with copper sulfate keeping the parameters such as shearing rate, stress, and torque intact. The microscopic images of the sintered parts showed high precision and an extremely smooth surface finish, which underscores the technique's potential to produce high-quality 3D metal objects. The solubility of dispersants significantly influenced the structural quality after washing and debinding processes. This study provides valuable information to design photocurable metallic suspensions for metal salts like copper sulfate pentahydrate.
ContributorsVerma, Harsh Pyarelal (Author) / Li, Xiangjia (Thesis advisor) / Nian, Qiong (Committee member) / Xie, Renxuan (Committee member) / Arizona State University (Publisher)
Created2023
156687-Thumbnail Image.png
Description
Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an

Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an inconvenient necessity in many metal AM parts. These sacrificial structures are used to fabricate large overhangs, anchor the part to the build substrate, and provide a heat pathway to avoid warping. Polymers AM has addressed this issue by using support material that is soluble in an electrolyte that the base material is not. In contrast, metals AM has traditionally approached support removal using time consuming, costly methods such as electrical discharge machining or a dremel.

This work introduces dissolvable supports to single- and multi-material metals AM. The multi-material approach uses material choice to design a functionally graded material where corrosion is the functionality being varied. The single-material approach is the primary focus of this thesis, leveraging already common post-print heat treatments to locally alter the microstructure near the surface. By including a sensitizing agent in the ageing heat treatment, carbon is diffused into the part decreasing the corrosion resistance to a depth equal to at least half the support thickness. In a properly chosen electrolyte, this layer is easily chemically, or electrochemically removed. Stainless steel 316 (SS316) and Inconel 718 are both investigated to study this process using two popular alloys. The microstructure evolution and corrosion properties are investigated for both. For SS316, the effect of applied electrochemical potential is investigated to describe the varying corrosion phenomena induced, and the effect of potential choice on resultant roughness. In summary, a new approach to remove supports from metal AM parts is introduced to decrease costs and further the field of metals AM by expanding the design space.
ContributorsLefky, Christopher (Author) / Hildreth, Owen (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Rykaczewski, Konrad (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
Description
Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids

Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids in the fresh state, towards establishing material-process relationships to enhance print quality. This study introduces 3D printable binders developed based on rotational and capillary rheology test parameters, and establish the direct influence of packing coefficients, geometric ratio, slip velocities, and critical print velocities on the extrudate quality. The ratio of packing fraction to the square of average particle diameter (0.01-0.02), and equivalent microstructural index (5-20) were suitable for printing, and were directly related to the cohesion and extrusional yield stress of the material. In fact, steady state pressure for printing (30-40 kPa) is proportional to the extrusional yield stress, and increases with the geometric ratio (0-60) and print velocity (5-50 mm/s). Higher print velocities results in higher wall shear stresses and was exponentially related to the slip layer thickness (estimated between 1-5μ), while the addition of superplasticizers improve the slip layer thickness and the extrudate flow. However, the steady state pressure and printer capacity limits the maximum print velocity while the deadzone length limits the minimum velocity allowable (critical velocity regime) for printing. The evolution of buildability with time for the fresh state mortars was characterized with digital image correlation using compressive strain and strain rate in printed layers. The fresh state characteristics (interlayer and interfilamentous) and process parameters (layer height and fiber dimensions) influence the hardened mechanical properties. A lower layer height generally improves the mechanical properties and slight addition of fiber (up to 0.3% by volume) results in a 15-30% increase in the mechanical properties. 3D scanning and point-cloud analysis was also used to assess the geometric tolerance of a print based on mean error distances, print accuracy index, and layer-wise percent overlap. The research output will contribute to a synergistic material-process design and development of test methods for printability in the context of 3D printing of concrete.
ContributorsAmbadi Omanakuttan Nair, Sooraj Kumar (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2021