Matching Items (8)
Filtering by

Clear all filters

134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148167-Thumbnail Image.png
Description

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered by 3D printed hinges. Current efforts frequently employ advanced materials and equipment that are not available to all users. The purpose of this project was to develop a parametric, print-in-place, self-locking hinge that could be printed using very basic materials and equipment. Six main designs were developed, printed, and tested for their strength in maintaining a locked position. Two general design types were used: 1) sliding hinges and 2) removable pin hinges. The test results were analyzed to identify and explain the causes of observed trends. The amount of interference between the pin vertex and knuckle hole edge was identified as the main factor in hinge strength. After initial testing, the designs were modified and applied to several structures, with successful results for a collapsible hexagon and a folding table. While the initial goal was to have one CAD model as a final product, the need to evaluate tradeoffs depending on the exact application made this impossible. Instead, a set of design guidelines was created to help users make strategic decisions and create their own design. Future work could explore additional scaling effects, printing factors, or other design types.

ContributorsAndreotti, Jaimee Jeannette (Author) / Bhate, Dhruv (Thesis director) / Aukes, Daniel (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students and landed an ongoing business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team has already made a profit and aims to be revenue-earning by the end of the project. The financial plan includes potential expenses for website development, printer filament, and 3D printers. Ctrl+P's brand mission is to print products desired by customers that consult Ctrl+P. The long-term goal of the team is to continue to gain customers and expand the business to a larger customer base.

ContributorsBouslog, Craig (Author) / Valentine, John (Co-author) / Bolick, Ryne (Co-author) / Sauerman, Luke (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have experience in computer-aided design (CAD) and can design products to print and sell, while the fourth member is responsible for the financial side of the business. The project began with a broader scope but later focused on the niche community of pool. In the spring semester, the team conducted customer discovery with over 600 ASU students; and in the fall semester, reached out to several pool halls to facilitate feedback on designs of custom pool racks. The team currently has a pending business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team's goal was to be revenue-earning by the end of the project, and they have already made a profit as a business.
ContributorsBolick, Ryne (Author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have experience in computer-aided design (CAD) and can design products to print and sell, while the fourth member is responsible for the financial side of the business. The project began with a broader scope but later focused on the niche community of pool. In the spring semester, the team conducted customer discovery with over 600 ASU students; and in the fall semester, reached out to several pool halls to facilitate feedback on designs of custom pool racks. The team currently has a pending business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team's goal was to be revenue-earning by the end of the project, and they have already made a profit as a business.
ContributorsBolick, Ryne (Author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Ctrl+P is a start-up business created through the founder's lab class at W.P. Carey. Our group created a 3D print shop that specializes in making products, such as customizable key chains and prominent landmarks, as well as custom 3D printed solutions for local businesses and companies.

ContributorsSauerman, Luke (Author) / Bolick, Ryne (Co-author) / Bouslog, Craig (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05
Description

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students and landed an ongoing business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team has already made a profit and aims to be revenue-earning by the end of the project. The financial plan includes potential expenses for website development, printer filament, and 3D printers. Ctrl+P's brand mission is to print products desired by customers, that consult Ctrl+P. The long-term goal of the team is to continue to gain customers, and expand the business to a larger customer base.

ContributorsValentine, John (Author) / Bolick, Ryne (Co-author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
132724-Thumbnail Image.png
Description
Multi-material manufacturing combines multiple fabrication processes to produce individual parts that can be made up of several different materials. These processes can include both additive and subtractive manufacturing methods as well as embedding other components during manufacturing. This yields opportunities for creating single parts that can take the

Multi-material manufacturing combines multiple fabrication processes to produce individual parts that can be made up of several different materials. These processes can include both additive and subtractive manufacturing methods as well as embedding other components during manufacturing. This yields opportunities for creating single parts that can take the place of an assembly of parts produced using conventional techniques. Some example applications of multi-material manufacturing include parts that are produced using one process then machined to tolerance using another, parts with integrated flexible joints, or parts that contain discrete embedded components such as reinforcing materials or electronics.

Multi-material manufacturing has applications in robotics because, with it, mechanisms can be built into a design without adding additional moving parts. This allows for robot designs that are both robust and low cost, making it a particularly attractive method for education or research. 3D printing is of particular interest in this area because it is low cost, readily available, and capable of easily producing complicated part geometries. Some machines are also capable of depositing multiple materials during a single process. However, up to this point, planning the steps to create a part using multi-material manufacturing has been done manually, requiring specialized knowledge of the tools used. The difficulty of this planning procedure can prevent many students and researchers from using multi-material manufacturing.

This project studied methods of automating the planning of multi-material manufacturing processes through the development of a computational framework for processing 3D models and automatically generating viable manufacturing sequences. This framework includes solid operations and algorithms which assist the designer in computing manufacturing steps for multi-material models. This research is informing the development of a software planning tool which will simplify the planning needed by multi-material fabrication, making it more accessible for use in education or research.

In our paper, Voxel-Based Cad Framework for Planning Functionally Graded and Multi-Step Rapid Fabrication Processes, we present a new framework for representing and computing functionally-graded materials for use in rapid prototyping applications. We introduce the material description itself, low-level operations which can be used to combine one or more geometries together, and algorithms which assist the designer in computing manufacturing-compatible sequences. We then apply these techniques to several example scenarios. First, we demonstrate the use of a Gaussian blur to add graded material transitions to a model which can then be produced using a multi-material 3D printing process. Our second example highlights our solution to the problem of inserting a discrete, off-the-shelf part into a 3D printed model during the printing sequence. Finally, we implement this second example and manufacture two example components.
ContributorsBrauer, Cole D (Author) / Aukes, Daniel (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05