Matching Items (12)
Filtering by

Clear all filters

149946-Thumbnail Image.png
Description
Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk

Yannis Constantinidis was the last of the handful of composers referred to collectively as the Greek National School. The members of this group strove to create a distinctive national style for Greece, founded upon a synthesis of Western compositional idioms with melodic, rhyhmic, and modal features of their local folk traditions. Constantinidis particularly looked to the folk melodies of his native Asia Minor and the nearby Dodecanese Islands. His musical output includes operettas, musical comedies, orchestral works, chamber and vocal music, and much piano music, all of which draws upon folk repertories for thematic material. The present essay examines how he incorporates this thematic material in his piano compositions, written between 1943 and 1971, with a special focus on the 22 Songs and Dances from the Dodecanese. In general, Constantinidis's pianistic style is expressed through miniature pieces in which the folk tunes are presented mostly intact, but embedded in accompaniment based in early twentieth-century modal harmony. Following the dictates of the founding members of the Greek National School, Manolis Kalomiris and Georgios Lambelet, the modal basis of his harmonic vocabulary is firmly rooted in the characteristics of the most common modes of Greek folk music. A close study of his 22 Songs and Dances from the Dodecanese not only offers a valuable insight into his harmonic imagination, but also demonstrates how he subtly adapts his source melodies. This work also reveals his care in creating a musical expression of the words of the original folk songs, even in purely instrumental compositon.
ContributorsSavvidou, Dina (Author) / Hamilton, Robert (Thesis advisor) / Little, Bliss (Committee member) / Meir, Baruch (Committee member) / Thompson, Janice M (Committee member) / Arizona State University (Publisher)
Created2011
150273-Thumbnail Image.png
Description
The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as

The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as composers at the time of this study. They include Fan-Ling Su (b. 1955), Hwei-Lee Chang (b. 1956), Shyh-Ji Pan-Chew (b. 1957), and Kwang-I Ying (b. 1960). Detailed biographical information on the four composers is presented and discussed. In addition, the musical form and features of all solo piano works at all levels by the four composers are analyzed, and the musical characteristics of each composer's work are discussed. The biography of a fifth composer, Wei-Ho Dai (b. 1950), is also discussed but is placed in the Appendices because her piano music could not be located. This research paper is presented in six chapters: (1) Prologue; the life and music of (2) Fan-Ling Su, (3) Hwei-Lee Chang, (4) Shyh-Ji Pan-Chew, and (5) Kwang-I Ying; and (6) Conclusion. The Prologue provides an overview of the development of Western classical music in Taiwan, a review of extant literature on the selected composers and their music, and the development of piano music in Taiwan. The Conclusion is comprised of comparisons of the four composers' music, including their personal interests and preferences as exhibited in their music. For example, all of the composers have used atonality in their music. Two of the composers, Fan-Ling Su and Kwang-I Ying, openly apply Chinese elements in their piano works, while Hwei-Lee Chang tries to avoid direct use of the Chinese pentatonic scale. The piano works of Hwei-Lee Chang and Shyh-Ji Pan-Chew are chromatic and atonal, and show an economical usage of material. Biographical information on Wei-Ho Dai and an overview of Taiwanese history are presented in the Appendices.
ContributorsWang, Jinding (Author) / Pagano, Caio (Thesis advisor) / Campbell, Andrew (Committee member) / Humphreys, Jere T. (Committee member) / Meyer-Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
Description
This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of

This paper describes six representative works by twentieth-century Chinese composers: Jian-Zhong Wang, Er-Yao Lin, Yi-Qiang Sun, Pei-Xun Chen, Ying-Hai Li, and Yi Chen, which are recorded by the author on the CD. The six pieces selected for the CD all exemplify traits of Nationalism, with or without Western influences. Of the six works on the CD, two are transcriptions of the Han Chinese folk-like songs, one is a composition in the style of the Uyghur folk music, two are transcriptions of traditional Chinese instrumental music dating back to the eighteenth century, and one is an original composition in a contemporary style using folk materials. Two of the composers, who studied in the United States, were strongly influenced by Western compositional style. The other four, who did not study abroad, retained traditional Chinese style in their compositions. The pianistic level of difficulty in these six pieces varies from intermediate to advanced level. This paper includes biographical information for the six composers, background information on the compositions, and a brief analysis of each work. The author was exposed to these six pieces growing up, always believing that they are beautiful and deserve to be appreciated. When the author came to the United States for her studies, she realized that Chinese compositions, including these six pieces, were not sufficiently known to her peers. This recording and paper are offered in the hopes of promoting a wider familiarity with Chinese music and culture.
ContributorsLuo, Yali, D.M.A (Author) / Hamilton, Robert (Thesis advisor) / Campbell, Andrew (Committee member) / Pagano, Caio (Committee member) / Cosand, Walter (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2012
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
193396-Thumbnail Image.png
Description
Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As the technology continues to evolve, its impact on manufacturing is

Additive manufacturing, also known as 3D printing, has revolutionized modern manufacturing in several key areas: complex geometry fabrication, rapid prototyping and iteration, customization and personalization, reduced material waste, supply chain flexibility, complex assemblies and consolidated parts, and material innovation. As the technology continues to evolve, its impact on manufacturing is expected to grow, driving further innovation and reshaping traditional production processes. Some innovation examples in this field are inspired by natural or bio-systems, such as honeycomb structures for internal morphological control to increase strength, bio-mimetic composites for scaffold structures, or shape memory materials in 4D printing for targeted drug delivery. However, the technology is limited by its ability to manipulate multiple materials, especially tuning their submicron characteristics when they show non-compatible chemical or physical features. For example, the deposition and patterning of nanoparticles with different dimensions have seen little success, except in highly precise and slow 3D printing processes like aerojet or electrohydrodynamic. Taking inspiration from the layered patterns and structures found in nature, this research aims to demonstrate the development and versatility of a newly developed ink-based composite 3D printing mechanism called multiphase direct ink writing (MDIW). The MDIW is a multi-materials extrusion system, with a unique nozzle design that can accommodate two immiscible and non-compatible polymer or nano-composite solutions as feedstock. The intricate internal structure of the nozzle enables the rearrangement of the feedstock in alternating layers (i.e., ABAB...) and multiplied within each printed line. This research will first highlight the design and development of the MDIW 3D printing mechanism, followed by laminate processing to establish the requirements of layer formation in the XY-axis and the effect of layer formation on its microstructural and mechanical properties. Next, the versatility of the mechanism is also shown through the one-step fabrication of shape memory polymers with dual stimuli responsiveness, highlighting the 4D printing capabilities. Moreover, the MDIW's capability of dual nanoparticle patterning for manufacturing multi-functional carbon-carbon composites will be highlighted. Comprehensive and in-depth studies are conducted to investigate the morphology-structure-property relationships, demonstrating potential applications in structural engineering, smart and intelligent devices, miniature robotics, and high-temperature systems.
ContributorsRavichandran, Dharneedar (Author) / Nian, Qiong (Thesis advisor) / Song, Kenan (Committee member) / Green, Matthew (Committee member) / Jin, Kailong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2024
156687-Thumbnail Image.png
Description
Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an

Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an inconvenient necessity in many metal AM parts. These sacrificial structures are used to fabricate large overhangs, anchor the part to the build substrate, and provide a heat pathway to avoid warping. Polymers AM has addressed this issue by using support material that is soluble in an electrolyte that the base material is not. In contrast, metals AM has traditionally approached support removal using time consuming, costly methods such as electrical discharge machining or a dremel.

This work introduces dissolvable supports to single- and multi-material metals AM. The multi-material approach uses material choice to design a functionally graded material where corrosion is the functionality being varied. The single-material approach is the primary focus of this thesis, leveraging already common post-print heat treatments to locally alter the microstructure near the surface. By including a sensitizing agent in the ageing heat treatment, carbon is diffused into the part decreasing the corrosion resistance to a depth equal to at least half the support thickness. In a properly chosen electrolyte, this layer is easily chemically, or electrochemically removed. Stainless steel 316 (SS316) and Inconel 718 are both investigated to study this process using two popular alloys. The microstructure evolution and corrosion properties are investigated for both. For SS316, the effect of applied electrochemical potential is investigated to describe the varying corrosion phenomena induced, and the effect of potential choice on resultant roughness. In summary, a new approach to remove supports from metal AM parts is introduced to decrease costs and further the field of metals AM by expanding the design space.
ContributorsLefky, Christopher (Author) / Hildreth, Owen (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Rykaczewski, Konrad (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
153581-Thumbnail Image.png
Description
The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart

The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart repair, where surgeons must consider the varied presentations of cardiac morphology and malformations. Three-dimensional (3D) visualization and 3D printing provide a mechanism to construct patient-specific, scale models of cardiovascular anatomy that surgeons and interventionalists can examine prior to a procedure. In addition, the same patient-specific models provide a valuable resource for educating future medical professionals. Instead of looking at idealized images on a computer screen or pages from medical textbooks, medical students can review a life-like model of patient anatomy.



In cases where surgical repair is insufficient to return the heart to normal function, a patient may proceed to advanced heart failure, and a heart transplant may be required. Unfortunately, a finite number of available donor hearts are available. A mechanical circulatory support (MCS) device can be used to bridge the time between heart failure and reception of a donor heart. These MCS devices are typically constructed for the adult population. Accordingly, the size associated to the device is a limiting factor for small adults or pediatric patients who often have smaller thoracic measurements. While current eligibility criteria are based on correlative measurements, the aforementioned 3D visualization capabilities can be leveraged to accomplish patient-specific fit analysis.

The main objectives of the work presented in this dissertation were 1) to develop and evaluate an optimized process for 3D printing cardiovascular anatomy for surgical planning and medical education and 2) to develop and evaluate computational tools to assess MCS device fit in specific patients. The evaluations for objectives 1 and 2 were completed with a collection of qualitative and quantitative validations. These validations include case studies to illustrate meaningful, qualitative results as well as quantitative results from surgical outcomes. The latter results present the first quantitative supporting evidence, beyond anecdotal case studies, regarding the efficacy of 3D printing for pre-procedural planning; this data is suitable as pilot data for clinical trials. The products of this work were used to plan 200 cardiovascular procedures (including 79 cardiothoracic surgeries at Phoenix Children's Hospital), via 3D printed heart models and assess MCS device fit in 29 patients across 6 countries.
ContributorsRyan, Justin Robert (Author) / Frakes, David (Thesis advisor) / Collins, Daniel (Committee member) / LaBelle, Jeffrey (Committee member) / Pizziconi, Vincent (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
158269-Thumbnail Image.png
Description
The current push towards integrating new digital fabrication techniques into all parts of daily life has raised concerns about the changing role of the craftsperson in creative making. The goal of this dissertation is to gain insight into how new technologies can be incorporated into creative practices in a way

The current push towards integrating new digital fabrication techniques into all parts of daily life has raised concerns about the changing role of the craftsperson in creative making. The goal of this dissertation is to gain insight into how new technologies can be incorporated into creative practices in a way that effectively supports the goals and workflows of practitioners. To do so, I explore three different cases in which 3D printing, a tool by which complex 3D objects are fabricated from digital designs, is used in tandem with traditional creative practices. Each project focuses on a different way to incorporate 3D printed objects, whether it be as a visualization for artists’ processes, a substitute medium for finished artworks, or as a step toward a larger fabrication workflow. Through this research, I discover how the integration of 3D printing affects creative processes, explore how these changes influence how and why practitioners engage in artistic practices, and gain insight into directions for future technological innovations.
ContributorsWeiler, Jennifer Joyce (Author) / Ingalls, Todd (Thesis advisor) / Kuznetsov, Stacey (Thesis advisor) / Neubauer, Mary B (Committee member) / Nam, Hye Y (Committee member) / Arizona State University (Publisher)
Created2020
Description
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected crystal sample, requiring a large quantity (up to grams) of crystal sample to solve a protein structure. Furthermore, mix-and-inject serial crystallography (MISC) at XFEL facilities requires fast mixing for short (millisecond) reaction time points (𝑡"), and current sample delivery methods have complex fabrication and assembly requirements.

To reduce sample consumption during SFX, a 3D printed T-junction for generating segmented aqueous-in-oil droplets was developed. The device surface properties were characterized both with and without a surface coating for improved droplet generation stability. Additionally, the droplet generation frequency was characterized. The 3D printed device interfaced with gas dynamic virtual nozzles (GDVNs) at the Linac Coherent Light Source (LCLS), and a relationship between the aqueous phase volume and the resulting crystal hit rate was developed. Furthermore, at the European XFEL (EuXFEL) a similar quantity and quality of diffraction data was collected for segmented sample delivery using ~60% less sample volume than continuous injection, and a structure of 3-deoxy-D-manno- octulosonate 8-phosphate synthase (KDO8PS) delivered by segmented injection was solved that revealed new structural details to a resolution of 2.8 Å.

For MISC, a 3D printed hydrodynamic focusing mixer for fast mixing by diffusion was developed to automate device fabrication and simplify device assembly. The mixer was characterized with numerical models and fluorescence microscopy. A variety of devices were developed to reach reaction intermediate time points, 𝑡", on the order of 100 – 103 ms. These devices include 3D printed mixers coupled to glass or 3D printed GDVNs and two designs of mixers with GDVNs integrated into the one device. A 3D printed mixer coupled to a glass GDVN was utilized at LCLS to study the oxidation of cytochrome c oxidase (CcO), and a structure of the CcO Pr intermediate was determined at 𝑡" = 8 s.
ContributorsEchelmeier, Austin (Author) / Ros, Alexandra (Thesis advisor) / Levitus, Marcia (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2019
158825-Thumbnail Image.png
Description
BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices

BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices is in the medical field. In particular, the implantable device field is the largest sector where cutting-edge BioMEMS technology is applied along with nanotechnology, artificial intelligence, genetic engineering, etc. However, implantable devices used for brain diseases are still very limited because unlike other parts of human organs, the brain is still unknow area which cannot be completely replaceable.To date, the most commercially used, almost only, implantable device for the brain is a shunt system for the treatment of hydrocephalus. The current cerebrospinal fluid (CSF) shunt treatment yields high failure rates: ~40% within first 2 years and 98% within 10 years. These failures lead to high hospital admission rates and repeated invasive surgical procedures, along with reduced quality of life. New treatments are needed to improve the disease burden associated with hydrocephalus. In this research, the proposed catheter-free, completely-passive miniaturized valve is designed to alleviate hydrocephalus at the originating site of the disorder and diminish failure mechanisms associated with current treatment methods. The valve is composed of hydrogel diaphragm structure and polymer or glass outer frame which are 100% bio-compatible material. The valve aims to be implanted between the sub-arachnoid space and the superior sagittal sinus to regulate the CSF flow substituting for the obstructed arachnoid granulations.
A cardiac pacemaker is one of the longest and most widely used implantable devices and the wireless technology is the most widely used with it for easy acquisition of vital signs and rapid disease diagnosis without clinical surgery. But the conventional pacemakers with some wireless technology face some essential complications associated with finite battery life, ultra-vein pacing leads, and risk of infection from device pockets and leads. To solve these problems, wireless cardiac pacemaker operating in fully-passive modality is proposed and demonstrates the promising potential by realizing a prototype and functional evaluating.
ContributorsLee, Seunghyun (Author) / Christen, Jennifer (Thesis advisor) / Goryll, Michael (Committee member) / Nikkhah, Mehdi (Committee member) / Sohn, SungMin (Committee member) / Arizona State University (Publisher)
Created2020