Matching Items (12)
Filtering by

Clear all filters

134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133513-Thumbnail Image.png
Description
The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the

The goal of our research was to develop and validate a method for predicting the mechanical behavior of Additively Manufactured multi-material honeycomb structures. Multiple approaches already exist in the field for modeling the behavior of cellular materials, including the bulk property assumption, homogenization and strut level characterization [1]. With the bulk property approach, the structure is assumed to behave according to what is known about the material in its bulk formulation, without regard to its geometry or scale. With the homogenization technique, the specimen that is being tested is treated as a solid material within the simulation environment even if the physical specimen is not. Then, reduced mechanical properties are assigned to the specimen to account for any voids that exist within the physical specimen. This approach to mechanical behavior prediction in cellular materials is shape dependent. In other words, the same model cannot be used from one specimen to the next if the cell shapes of those lattices differ in any way. When using the strut level characterization approach, a single strut (the connecting member between nodes constituting a cellular material) is isolated and tested. With this approach, there tends to be a significant deviation in the experimental data due to the small size of the isolated struts. Yet it has the advantage of not being shape sensitive, at least in principle. The method that we developed, and chose to test lies within the latter category, and is what we have coined as the Representative Lattice Element (RLE) Method. This method is modeled after the well-established Representative Volume Element (RVE) method [2]. We define the RLE as the smallest unit over which mechanical tests can be conducted that will provide results which are representative of the larger lattice structure. In other words, the theory is that a single member (or beam in this case) of a honeycomb structure can be taken, tests can be conducted on this member to determine the mechanical properties of the representative lattice element and the results will be representative of the mechanical behavior whole structure. To investigate this theory, we designed specimens, conducted various tensile and compression tests, analyzed the recorded data, conducted a micromechanics study, and performed structural simulation work using commercial Finite Element Analysis software.
ContributorsSalti, Ziyad Zuheir (Co-author) / Eppley, Trevor (Co-author) / Bhate, Dhruv (Thesis director) / Song, Kenan (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material

With FDM printing becoming ubiquitous within the commercial and private sectors, there are many who would want to print a part without supports for a variety of reasons. Usually, they want to prints a part with difficult to reach places that would make it impossible to remove any support material without damaging the part. I will be going over options to consider when designing parts to ensure a given model will be able to be printed without support material.

ContributorsYoshitake, Jacob (Author) / Sugar, Thomas (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2021-12
Description

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students and landed an ongoing business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team has already made a profit and aims to be revenue-earning by the end of the project. The financial plan includes potential expenses for website development, printer filament, and 3D printers. Ctrl+P's brand mission is to print products desired by customers that consult Ctrl+P. The long-term goal of the team is to continue to gain customers and expand the business to a larger customer base.

ContributorsBouslog, Craig (Author) / Valentine, John (Co-author) / Bolick, Ryne (Co-author) / Sauerman, Luke (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have experience in computer-aided design (CAD) and can design products to print and sell, while the fourth member is responsible for the financial side of the business. The project began with a broader scope but later focused on the niche community of pool. In the spring semester, the team conducted customer discovery with over 600 ASU students; and in the fall semester, reached out to several pool halls to facilitate feedback on designs of custom pool racks. The team currently has a pending business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team's goal was to be revenue-earning by the end of the project, and they have already made a profit as a business.

ContributorsBolick, Ryne (Author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have experience in computer-aided design (CAD) and can design products to print and sell, while the fourth member is responsible for the financial side of the business. The project began with a broader scope but later focused on the niche community of pool. In the spring semester, the team conducted customer discovery with over 600 ASU students; and in the fall semester, reached out to several pool halls to facilitate feedback on designs of custom pool racks. The team currently has a pending business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team's goal was to be revenue-earning by the end of the project, and they have already made a profit as a business.
ContributorsBolick, Ryne (Author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description
This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have

This thesis paper outlines the Ctrl+P print store business, an honors thesis project conducted through the Founder’s Lab program at Arizona State University. The project is an online store for 3D printed items, operated by a team of four students with backgrounds in engineering and finance. Three team members have experience in computer-aided design (CAD) and can design products to print and sell, while the fourth member is responsible for the financial side of the business. The project began with a broader scope but later focused on the niche community of pool. In the spring semester, the team conducted customer discovery with over 600 ASU students; and in the fall semester, reached out to several pool halls to facilitate feedback on designs of custom pool racks. The team currently has a pending business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team's goal was to be revenue-earning by the end of the project, and they have already made a profit as a business.
ContributorsBolick, Ryne (Author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Ctrl+P is a start-up business created through the founder's lab class at W.P. Carey. Our group created a 3D print shop that specializes in making products, such as customizable key chains and prominent landmarks, as well as custom 3D printed solutions for local businesses and companies.

ContributorsSauerman, Luke (Author) / Bolick, Ryne (Co-author) / Bouslog, Craig (Co-author) / Valentine, John (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05
Description

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students and landed an ongoing business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team has already made a profit and aims to be revenue-earning by the end of the project. The financial plan includes potential expenses for website development, printer filament, and 3D printers. Ctrl+P's brand mission is to print products desired by customers, that consult Ctrl+P. The long-term goal of the team is to continue to gain customers, and expand the business to a larger customer base.

ContributorsValentine, John (Author) / Bolick, Ryne (Co-author) / Bouslog, Craig (Co-author) / Sauerman, Luke (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05