Matching Items (5)
Filtering by

Clear all filters

137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134441-Thumbnail Image.png
Description
Improved pancreatic cancer diagnostic technology has the potential to improve patient prognosis by increasing cancer screening rates and encouraging early detection of the cancer. To increase the sensitivity and specificity while decreasing the cost and time investment, the emerging detection method of electrochemical impedance spectroscopy (EIS) was tested to detect

Improved pancreatic cancer diagnostic technology has the potential to improve patient prognosis by increasing cancer screening rates and encouraging early detection of the cancer. To increase the sensitivity and specificity while decreasing the cost and time investment, the emerging detection method of electrochemical impedance spectroscopy (EIS) was tested to detect two pancreatic cancer specific biomarkers. The antibodies of carcinoembryonic antigen and quiescin sulfhydryl oxidase 1 were immobilized individually to gold disk electrodes and tested for binding to their respective antigens. An AC signal of varying potential and a wide frequency sweep was applied to the electrode system and the resulting imaginary impedance values were analyzed. Based off of the highest slope and R-squared values of the collected impedance values, the optimal binding frequencies of QSOX1 and CEA with their antibodies was determined to be 97.66 Hz and 17.44 Hz, respectively. EIS was also used to test for potential multimarker detection by coimmobilizing anti-CEA and anti-QSOX1 to the surface of gold disk electrodes. Each system's impedance response was correlated to the physiological concentration range of CEA and QSOX1 individually. The resulting impedance and concentration calibration curves had R-squared values of 0.78 and 0.79 for the calculated QSOX1 and CEA, respectively. Both markers showed similar trends between the calculated and actual calibration curves for each marker. The imaginary impedance output lacks two independent peaks for the distinct optimal binding frequencies of both biomarkers after signal subtraction and show a large shift in optimal frequencies. From analyzing the co-immobilization data for the calculated and experimentally determined calibration curves of CEA and QSOX1, both curves had different correlation values between imaginary impedance values and concentration. Add and subtracting the experimental and calculated co-immobilization, QSOX1, and CEA signals suggest an oversaturation of QSOX1 used during the experiments.
ContributorsMalla, Akshara (Co-author) / Murali, Keerthana (Co-author) / LaBelle, Jeffrey (Thesis director) / Lin, Chi-En (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153581-Thumbnail Image.png
Description
The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart

The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart repair, where surgeons must consider the varied presentations of cardiac morphology and malformations. Three-dimensional (3D) visualization and 3D printing provide a mechanism to construct patient-specific, scale models of cardiovascular anatomy that surgeons and interventionalists can examine prior to a procedure. In addition, the same patient-specific models provide a valuable resource for educating future medical professionals. Instead of looking at idealized images on a computer screen or pages from medical textbooks, medical students can review a life-like model of patient anatomy.



In cases where surgical repair is insufficient to return the heart to normal function, a patient may proceed to advanced heart failure, and a heart transplant may be required. Unfortunately, a finite number of available donor hearts are available. A mechanical circulatory support (MCS) device can be used to bridge the time between heart failure and reception of a donor heart. These MCS devices are typically constructed for the adult population. Accordingly, the size associated to the device is a limiting factor for small adults or pediatric patients who often have smaller thoracic measurements. While current eligibility criteria are based on correlative measurements, the aforementioned 3D visualization capabilities can be leveraged to accomplish patient-specific fit analysis.

The main objectives of the work presented in this dissertation were 1) to develop and evaluate an optimized process for 3D printing cardiovascular anatomy for surgical planning and medical education and 2) to develop and evaluate computational tools to assess MCS device fit in specific patients. The evaluations for objectives 1 and 2 were completed with a collection of qualitative and quantitative validations. These validations include case studies to illustrate meaningful, qualitative results as well as quantitative results from surgical outcomes. The latter results present the first quantitative supporting evidence, beyond anecdotal case studies, regarding the efficacy of 3D printing for pre-procedural planning; this data is suitable as pilot data for clinical trials. The products of this work were used to plan 200 cardiovascular procedures (including 79 cardiothoracic surgeries at Phoenix Children's Hospital), via 3D printed heart models and assess MCS device fit in 29 patients across 6 countries.
ContributorsRyan, Justin Robert (Author) / Frakes, David (Thesis advisor) / Collins, Daniel (Committee member) / LaBelle, Jeffrey (Committee member) / Pizziconi, Vincent (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
Description
This report outlines the current methods and instrumentation used for diabetes monitoring and detection, and evaluates the problems that these methods face. Additionally, it will present an approach to remedy these problems. The purpose of this project is to create a potentiostat that is capable of controlling a diabetes meter

This report outlines the current methods and instrumentation used for diabetes monitoring and detection, and evaluates the problems that these methods face. Additionally, it will present an approach to remedy these problems. The purpose of this project is to create a potentiostat that is capable of controlling a diabetes meter that monitors multiple biological markers simultaneously. Glucose is the most commonly measured biomarker for diabetes. However, it provides only a limited amount of information. In order to give the user of the meter more information about the progression of his or her disease, the concentrations of several different biological markers for diabetes may be measured using a system that operates in a similar fashion to blood glucose meters. The potentiostat provides an input voltage into the electrode sensor and receives the current from the sensor as the output. From this information, the impedance may be calculated. The concentrations of each of the biomarkers in the blood sample can then be determined. In an effort to increase sensitivity, the diabetes meter forgoes the use of amperometric i-t in favor of the electrochemical impedance spectroscopy technique. A three-electrode electrochemical sensor is used with the meter. In order to perform simultaneous and rapid testing of biomarker concentration, a single multisine input wave is generated using a hardware implementation of a summing amplifier and waveform generators.
ContributorsWu, Diane Zhang (Author) / LaBelle, Jeffrey (Thesis director) / Bakkaloglu, Bertan (Committee member) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05