Matching Items (6)
Filtering by

Clear all filters

136262-Thumbnail Image.png
Description
The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases.

The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases. Modern technology can allow us to use CT scans for both diagnosis and treatment. This medical imaging can be converted into three-dimensional patient specific models that are actualized through 3D printing. These implants improve upon the current state of the art because they can be produced in a timely manner, are developed with materials and methods ensuring their biocompatibility, and follow architectures and geometries best suited for the patient to improve their voice quality of life. Additionally they should be able to allow patient speech in the case of partial laryngectomies where the arytenoid has been removed by acting as a permanent vocal fold This treatment process for laryngectomies aligns itself with personalized medicine by targeting its geometry based on that of the patient. Technologies and manufacturing processes utilized to produce them are accessible and could all be used within the clinical space. The life-saving implant required for the laryngectomy healing and recovery process can be ready to implant for the patient within a few days of imaging them.
ContributorsBarry, Colin Patrick (Author) / Pizziconi, Vincent (Thesis director) / Lott, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
153581-Thumbnail Image.png
Description
The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart

The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart repair, where surgeons must consider the varied presentations of cardiac morphology and malformations. Three-dimensional (3D) visualization and 3D printing provide a mechanism to construct patient-specific, scale models of cardiovascular anatomy that surgeons and interventionalists can examine prior to a procedure. In addition, the same patient-specific models provide a valuable resource for educating future medical professionals. Instead of looking at idealized images on a computer screen or pages from medical textbooks, medical students can review a life-like model of patient anatomy.



In cases where surgical repair is insufficient to return the heart to normal function, a patient may proceed to advanced heart failure, and a heart transplant may be required. Unfortunately, a finite number of available donor hearts are available. A mechanical circulatory support (MCS) device can be used to bridge the time between heart failure and reception of a donor heart. These MCS devices are typically constructed for the adult population. Accordingly, the size associated to the device is a limiting factor for small adults or pediatric patients who often have smaller thoracic measurements. While current eligibility criteria are based on correlative measurements, the aforementioned 3D visualization capabilities can be leveraged to accomplish patient-specific fit analysis.

The main objectives of the work presented in this dissertation were 1) to develop and evaluate an optimized process for 3D printing cardiovascular anatomy for surgical planning and medical education and 2) to develop and evaluate computational tools to assess MCS device fit in specific patients. The evaluations for objectives 1 and 2 were completed with a collection of qualitative and quantitative validations. These validations include case studies to illustrate meaningful, qualitative results as well as quantitative results from surgical outcomes. The latter results present the first quantitative supporting evidence, beyond anecdotal case studies, regarding the efficacy of 3D printing for pre-procedural planning; this data is suitable as pilot data for clinical trials. The products of this work were used to plan 200 cardiovascular procedures (including 79 cardiothoracic surgeries at Phoenix Children's Hospital), via 3D printed heart models and assess MCS device fit in 29 patients across 6 countries.
ContributorsRyan, Justin Robert (Author) / Frakes, David (Thesis advisor) / Collins, Daniel (Committee member) / LaBelle, Jeffrey (Committee member) / Pizziconi, Vincent (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
135498-Thumbnail Image.png
Description
A much anticipated outcome of the rapidly emerging field of personalized medicine is a significant increase in the standard of care afforded to patients. However, before the full potential of personalized medicine can be realized, key enabling technologies must be further developed. The purpose of this study was to use

A much anticipated outcome of the rapidly emerging field of personalized medicine is a significant increase in the standard of care afforded to patients. However, before the full potential of personalized medicine can be realized, key enabling technologies must be further developed. The purpose of this study was to use enabling technologies such as medical imaging, image reconstruction, and rapid prototyping to create a model of an implant for use in vocal fold repair surgery. Vocal fold repair surgery is performed for patients with great difficulty in phonation, breathing, and swallowing as a result of vocal fold damage caused by age, disease, cancer, scarring, or paralysis. This damage greatly hinders patients' social, personal, and professional lives due to difficulty in efficient communication. In this project, the image reconstruction of a subject's vocal fold in 3D is demonstrated utilizing NIH-funded advanced image processing software known as ITK-SNAP, which uniquely allows both semi-automatic and manual image segmentation. The hyoid bone, thyroid cartilage, arytenoid cartilage, and empty airway of the larynx were isolated using active contouring for use as anatomical benchmarks. Then, the vocal fold mold, including the vocal fold, a superior extension along the thyroid cartilage, and an inferior extension along the airway, was modeled with manual segmentation. The configured, isolated, and edited vocal fold model was converted into an STL file. This STL file can be imported to a 3D printer to fabricate a mold for reconstruction of a patient specific vocal fold biocompatible implant. This feasibility study serves as a basis to allow ENT surgeons at the Mayo Clinic to dramatically improve reparative surgery outcomes for patients. This work embodies the strategic importance of multidisciplinary teams working at the interface of technology and medicine to optimize patient outcomes.
ContributorsPatel, Anjana Ketan (Author) / Pizziconi, Vincent (Thesis director) / Lott, David (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131543-Thumbnail Image.png
Description
Tissue engineering scaffold fabrication methods often have tradeoffs associated with them that prevent one method from fulfilling all design requirements of a desired scaffold. This undergraduate thesis seeks to combine 3D printing and electrospinning tissue engineering fabrication methods into a hybrid fabrication method that can potentially fulfill more design requirements

Tissue engineering scaffold fabrication methods often have tradeoffs associated with them that prevent one method from fulfilling all design requirements of a desired scaffold. This undergraduate thesis seeks to combine 3D printing and electrospinning tissue engineering fabrication methods into a hybrid fabrication method that can potentially fulfill more design requirements than each method alone. The hybrid scaffolds were made by inserting electrospun scaffolds between layers of 3D printed scaffolds of increasing print temperature and effects on adhesion and mechanical properties were characterized. The fabrication method proved to be feasible and print temperature affected both adhesion and mechanical properties of the scaffolds. A positive, non-linear relationship was seen between print temperature and adhesion and resulting force. Insertion of electrospun mats led to increased damping of scaffolds. Evidence from characterization indicated factors other than print temperature were likely contributing to adhesion and mechanical properties. If studied further, this fabrication method could potentially be used to improve overall structure and regenerative potential of tissue engineering scaffolds.
ContributorsCornella, Joseph Paul (Author) / Pizziconi, Vincent (Thesis director) / McPhail, Michael J (Committee member) / School of Music (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05