Matching Items (2)
Filtering by

Clear all filters

157605-Thumbnail Image.png
Description

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US cities despite the high prevalence of mechanical air conditioning in the building stock. Therefore, part of the effort to reducing the overall vulnerability of urban populations to heat needs to be dedicated to understanding indoor exposure, its underlying behavioral and physical mechanisms, health outcomes, and possible mitigation strategies. This dissertation is an effort to advance the knowledge in these areas. The cities of Houston, TX, Phoenix, AZ, and Los Angeles, CA, are used as test beds to assess exposure and vulnerability to indoor heat among people 65 and older. Measurements and validated whole-building simulations were used in conjunction with heat-vulnerability surveys and epidemiological modelling (of collaborators) to (1) understand how building characteristics and practices govern indoor exposure to heat among the elderly; (2) evaluate mechanical air conditioning as a reliable protective factor against indoor exposure to heat; and (3) identify potential impacts from the evolving building stock and a warming urban climate. The results show strong associations between indoor heat exposure and certain health outcomes and highlight the vulnerability of elderly populations to heat despite the prevalence of air conditioning systems. Given the current construction practices and urban warming trends, this vulnerability will continue to grow. Therefore, policies promoting climate adaptive buildings features, as well as better access to reliable and affordable AC are needed. In addition, this research draws attention to the significant potential health consequences of large-scale power outages and proposes the implementation of passive survivability in regulations as one important preventative action.

ContributorsBaniassadi, Amir (Author) / Sailor, David (Thesis advisor) / Bryan, Harvey M (Committee member) / Reddy, Agami (Committee member) / Chester, Mikhail M (Committee member) / Arizona State University (Publisher)
Created2019
132590-Thumbnail Image.png
Description
Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.
ContributorsWala, Ryland Gerald (Co-author) / Wala, Ryland (Co-author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Drucker, Jeffery (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Physics (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05