Matching Items (41)
134949-Thumbnail Image.png
Description
The traditional early design phase of an aircraft involves a design approach in which the model's characteristics are defined before the CAD model is built. This thesis discusses an alternative to the early design process employing the use of a parametric model. A parametric model is one in which its

The traditional early design phase of an aircraft involves a design approach in which the model's characteristics are defined before the CAD model is built. This thesis discusses an alternative to the early design process employing the use of a parametric model. A parametric model is one in which its characteristics are defined as functions of input parameters that a user will choose, as opposed to being pre-defined. This allows for faster iterations of the CAD design of an aircraft going through its first design phases. In order to demonstrate the feasibility and efficiency, a tool was developed in the form of a script written in Python that compiles into a plugin that a user can install into Rhino. With a full template of about 70 parameters that have significant effects on the performance characteristics of an aircraft, a user with the plugin can generate a full model. The overall design phase and development of the script into a publicly available installation file is discussed below. Results for the thesis took the form of insight gained into the field of parametric modeling. After development and implementation, emphasis points such as generation time, focus on parameters with large effect on aircraft performance, and interpolation of parameters dependent upon others were concluded.
ContributorsElliott, Steven Joseph (Author) / Takahashi, Tim (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134845-Thumbnail Image.png
Description
The purpose of this thesis was to develop a tool to provide information and data for design teams to use throughout the mobile application design process. Ideally, this would enable teams to see patterns in iterative design, and ultimately use data-driven analysis to make their own decisions. The initial problem

The purpose of this thesis was to develop a tool to provide information and data for design teams to use throughout the mobile application design process. Ideally, this would enable teams to see patterns in iterative design, and ultimately use data-driven analysis to make their own decisions. The initial problem was a lack of available information offered by mobile application design teams—the initial goal being to work closely with design teams to learn their decision-making methodology. However, every team that was reached out to responded with rejection, presenting a new problem: a lack of access to quality information regarding the decision-making process for mobile applications. This problem was addressed by the development of an ethical hacking script that retrieves reviews in bulk from the Google Play Store using Python. The project was a success—by feeding an application’s unique Play Store ID, the script retrieves a user-specified amount of reviews (up to millions) for that mobile application and the 4 “recommended” applications from the Play Store. Ultimately, this thesis proved that protected reviews on the Play Store can be ethically retrieved and used for data-driven decision making and identifying patterns in an application’s iterative design. This script provides an automated tool for teams to “put a finger on the pulse” of their target applications.
ContributorsDyer, Mitchell Patrick (Author) / Lin, Elva (Thesis director) / Giles, Charles (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155153-Thumbnail Image.png
Description
Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of these transporters are implicated in hypertension, heart failure, epilepsy, and autism, making them well-established drug targets. Although experimental structures for bacterial homologs of the human Na+/H+

Na+/H+ antiporters are vital membrane proteins for cell homeostasis, transporting Na+ ions in exchange for H+ across the lipid bilayer. In humans, dysfunction of these transporters are implicated in hypertension, heart failure, epilepsy, and autism, making them well-established drug targets. Although experimental structures for bacterial homologs of the human Na+/H+ have been obtained, the detailed mechanism for ion transport is still not well-understood. The most well-studied of these transporters, Escherichia coli NhaA, known to transport 2 H+ for every Na+ extruded, was recently shown to bind H+ and Na+ at the same binding site, for which the two ion species compete. Using molecular dynamics simulations, the work presented in this dissertation shows that Na+ binding disrupts a previously-unidentified salt bridge between two conserved residues, suggesting that one of these residues, Lys300, may participate directly in transport of H+. This work also demonstrates that the conformational change required for ion translocation in a homolog of NhaA, Thermus thermophilus NapA, thought by some to involve only small helical movements at the ion binding site, is a large-scale, rigid-body movement of the core domain relative to the dimerization domain. This elevator-like transport mechanism translates a bound Na+ up to 10 Å across the membrane. These findings constitute a major shift in the prevailing thought on the mechanism of these transporters, and serve as an exciting launchpad for new developments toward understanding that mechanism in detail.
ContributorsDotson, David L (Author) / Beckstein, Oliver (Thesis advisor) / Ozkan, Sefika B (Committee member) / Ros, Robert (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2016
148399-Thumbnail Image.png
Description

Creation of a database and Python API to clean, organize, and streamline data collection from an updated Qualtrics survey used to capture applicant information for the Fleischer Scholars Program run by the W. P. Carey UG Admissions Office.

ContributorsMoreno, Luciano (Co-author) / Gordan, Nicholas (Co-author) / Sopha, Matt (Thesis director) / Moser, Kathleen (Committee member) / Stark, Karen (Committee member) / Department of Information Systems (Contributor, Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148237-Thumbnail Image.png
Description

Creation of a database and Python API to clean, organize, and streamline data collection from an updated Qualtrics survey used to capture applicant information for the Fleischer Scholars Program run by the W. P. Carey UG Admissions Office.

ContributorsGordon, Nicolas A (Co-author) / Moreno, Luciano (Co-author) / Sopha, Matthew (Thesis director) / Moser, Kathleen (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148062-Thumbnail Image.png
Description

Sports analytics is a growing field that attempts to showcase interesting aspects of a sport with the use of modern technology and machine learning techniques. This thesis will demonstrate how the NBA has progressed in the past decade by comparing the performance have five teams (SAS, OKC, PHO, MIN, and

Sports analytics is a growing field that attempts to showcase interesting aspects of a sport with the use of modern technology and machine learning techniques. This thesis will demonstrate how the NBA has progressed in the past decade by comparing the performance have five teams (SAS, OKC, PHO, MIN, and SAC). It will also provide key insight on what an NBA team should focus on to build an optimized NBA team composition, which will better their performance in the league, which will improve their chances of making into the playoffs. These teams were chosen after conducting extensive analysis on all NBA teams. These five teams were chosen because of the variability in performance (two successful and three less successful teams). Two successful teams, SAS and OKC, and three less successful teams, PHO, MIN, and SAC, were chosen to exemplify the different approaches of teams in the NBA and to distinguish what an NBA team should consider build an optimized team composition to better their performance in the league stage.

ContributorsJegadesan, Sai (Author) / Shin, Donghyuk (Thesis director) / Benjamin, Victor (Committee member) / Department of Information Systems (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This paper describes a project involving the optimization of the analysis process of FreeSurfer and ANTS Registration for neuroscience analytics of patients at risk of cognitive decline using Nipype. The paper details the process of discovering more about Nipype, learning to use a supercomputer, and implementing the open-source python code

This paper describes a project involving the optimization of the analysis process of FreeSurfer and ANTS Registration for neuroscience analytics of patients at risk of cognitive decline using Nipype. The paper details the process of discovering more about Nipype, learning to use a supercomputer, and implementing the open-source python code to fit the needs of the research lab. Nipype is a python-based initiative to unify the various software packages used within the neuroscience community for data analysis. This paper also serves as documentation of the steps taken to complete the project so that future students are able to continue the optimization process to result in one cohesive workflow in which data is able to flow through a unified pipeline of analysis in the future.

ContributorsCave, Elizabet (Author) / Ofori, Edward (Thesis director) / Sopha, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2023-05
Description

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will be described is self-play in video games, where a neural model will be researched and described that will teach a computer to complete a level of Super Mario World (1990) on its own. The neural model in question was inspired by the academic paper “Evolving Neural Networks through Augmenting Topologies”, which was written by Kenneth O. Stanley and Risto Miikkulainen of University of Texas at Austin. The model that will actually be described is from YouTuber SethBling of the California Institute of Technology. The second department that will be described is cybersecurity, where an algorithm is described from the academic paper “Process Based Volatile Memory Forensics for Ransomware Detection”, written by Asad Arfeen, Muhammad Asim Khan, Obad Zafar, and Usama Ahsan. This algorithm utilizes Python and the Volatility framework to detect malicious software in an infected system.

ContributorsBallecer, Joshua (Author) / Yang, Yezhou (Thesis director) / Luo, Yiran (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Financial decisions, which are major life decisions, can often be overly complicated. Day-to-day financial calculations and investment decisions can be time-consuming and prone to human error. Thus, keeping in mind the complicated nature of finance and the heavy dependence on these formulas for decision-making, the need for a comprehensive financial

Financial decisions, which are major life decisions, can often be overly complicated. Day-to-day financial calculations and investment decisions can be time-consuming and prone to human error. Thus, keeping in mind the complicated nature of finance and the heavy dependence on these formulas for decision-making, the need for a comprehensive financial calculator rises. The financial calculator is a set of comprehensive logical formulas that takes user input and provides recommendations along with numerical values. The program uses Python scripting language and is focused on the core logic. The program also uses a variety of finance topics and related concepts.

ContributorsJee, Ambika (Author) / Hoffman, David (Thesis director) / McDaniel, Cara (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / Department of Information Systems (Contributor)
Created2023-05