Matching Items (13)
Filtering by

Clear all filters

150836-Thumbnail Image.png
Description
Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.
ContributorsNair, Shreejay (Author) / Davulcu, Hasan (Thesis advisor) / Dasgpta, Partha (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
134809-Thumbnail Image.png
Description
Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a means of managing their anxiety, a mechanism of Terror Management Theory (TMT). These opinions have distinct impacts on the emotions that people express both online and offline through both positive and negative sentiments. This paper focuses on using sentiment analysis on twitter hash-tags during five major terrorist attacks that created a significant response on social media, which collectively show the effects that 140-character tweets have on perceptions in social media. The purpose of analyzing the sentiments of tweets after terror attacks allows for the visualization of the effect of key-words and the possibility of manipulation by the use of emotional contagion. Through sentiment analysis, positive, negative and neutral emotions were portrayed in the tweets. The keywords detected also portray characteristics about terror attacks which would allow for future analysis and predictions in regards to propagating a specific emotion on social media during future crisis.
ContributorsHarikumar, Swathikrishna (Author) / Davulcu, Hasan (Thesis director) / Bodford, Jessica (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
156643-Thumbnail Image.png
Description
When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms

When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing, symmetry, and other such layout properties, there is not much known about how these algorithms relate to a user’s ability to perceive graph properties for a given graph layout. This study applies previously established methodologies for perceptual analysis to identify which graph drawing layout will help the user best perceive a particular graph property. A large scale (n = 588) crowdsourced experiment is conducted to investigate whether the perception of two graph properties (graph density and average local clustering coefficient) can be modeled using Weber’s law. Three graph layout algorithms from three representative classes (Force Directed - FD, Circular, and Multi-Dimensional Scaling - MDS) are studied, and the results of this experiment establish the precision of judgment for these graph layouts and properties. The findings demonstrate that the perception of graph density can be modeled with Weber’s law. Furthermore, the perception of the average clustering coefficient can be modeled as an inverse of Weber’s law, and the MDS layout showed a significantly different precision of judgment than the FD layout.
ContributorsSoni, Utkarsh (Author) / Maciejewski, Ross (Thesis advisor) / Kobourov, Stephen (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2018
154084-Thumbnail Image.png
Description
Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by

Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system self calibrating and self learning abilities.

For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting.

For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control.

The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments.
ContributorsWang, Yuan (Author) / Dasgupta, Partha (Thesis advisor) / Davulcu, Hasan (Committee member) / Huang, Dijiang (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2015
152506-Thumbnail Image.png
Description
In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.
ContributorsHayden, Thomas (Author) / Maciejewski, Ross (Thesis advisor) / Wang, Yalin (Committee member) / Runger, George C. (Committee member) / Mack, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
153478-Thumbnail Image.png
Description
US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.
ContributorsGokalp, Sedat (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2015
153303-Thumbnail Image.png
Description
Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards

Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards each attribute and hence "one size fits all" methodology might not satisfy all the users. True user satisfaction can be obtained only when the skyline is tailored specifically for each user based on his preferences.



This research investigates the problem of preference aware skyline processing which consists of inferring the preferences of users and computing a skyline specific to that user, taking into account his preferences. This research proposes a model that transforms the data from a given space to a user preferential space where each attribute represents the preference of the user. This study proposes two techniques "Preferential Skyline Processing" and "Latent Skyline Processing" to efficiently compute preference aware skylines in the user preferential space. Finally, through extensive experiments and performance analysis the correctness of the recommendations and the algorithm's ability to outperform the naïve ones is confirmed.
ContributorsRathinavelu, Sriram (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2014
152996-Thumbnail Image.png
Description
This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image,

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for a certain size.

Second, I propose a method for a user to understand and systematically explore good building layouts. Starting from a discrete set of good layouts, I analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. I represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts.

Finally, I propose an algorithm to computationally design street networks that balance competing requirements such as quick travel time and reduced through traffic in residential neighborhoods. The user simply provides high-level functional specifications for a target neighborhood, while my algorithm best satisfies the specification by solving for both connectivity and geometric layout of the network.
ContributorsBao, Fan (Author) / Wonka, Peter (Thesis advisor) / Maciejewski, Ross (Committee member) / Razdan, Anshuman (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2014
153085-Thumbnail Image.png
Description
Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a unified bi-level learning model that contains several existing feature selection models as special cases. Then the proposed model is further extended to tackle the block-wise missing data, one of the major challenges in the diagnosis of Alzheimer's Disease (AD). Moreover, I propose a novel interpretable sparse group feature selection model that greatly facilitates the procedure of parameter tuning and model selection. Last but not least, I show that by solving the sparse group hard thresholding problem directly, the sparse group feature selection model can be further improved in terms of both algorithmic complexity and efficiency. Promising results are demonstrated in the extensive evaluation on multiple real-world data sets.
ContributorsXiang, Shuo (Author) / Ye, Jieping (Thesis advisor) / Mittelmann, Hans D (Committee member) / Davulcu, Hasan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2014
155291-Thumbnail Image.png
Description
The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work

The connections between different entities define different kinds of networks, and many such networked phenomena are influenced by their underlying geographical relationships. By integrating network and geospatial analysis, the goal is to extract information about interaction topologies and the relationships to related geographical constructs. In the recent decades, much work has been done analyzing the dynamics of spatial networks; however, many challenges still remain in this field. First, the development of social media and transportation technologies has greatly reshaped the typologies of communications between different geographical regions. Second, the distance metrics used in spatial analysis should also be enriched with the underlying network information to develop accurate models.

Visual analytics provides methods for data exploration, pattern recognition, and knowledge discovery. However, despite the long history of geovisualizations and network visual analytics, little work has been done to develop visual analytics tools that focus specifically on geographically networked phenomena. This thesis develops a variety of visualization methods to present data values and geospatial network relationships, which enables users to interactively explore the data. Users can investigate the connections in both virtual networks and geospatial networks and the underlying geographical context can be used to improve knowledge discovery. The focus of this thesis is on social media analysis and geographical hotspots optimization. A framework is proposed for social network analysis to unveil the links between social media interactions and their underlying networked geospatial phenomena. This will be combined with a novel hotspot approach to improve hotspot identification and boundary detection with the networks extracted from urban infrastructure. Several real world problems have been analyzed using the proposed visual analytics frameworks. The primary studies and experiments show that visual analytics methods can help analysts explore such data from multiple perspectives and help the knowledge discovery process.
ContributorsWang, Feng (Author) / Maciejewski, Ross (Thesis advisor) / Davulcu, Hasan (Committee member) / Grubesic, Anthony (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2017