Matching Items (42)
Filtering by

Clear all filters

151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
152496-Thumbnail Image.png
Description
Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide

Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide a good opportunity for children to engage in physical activity as well as improve their readiness to learn. Purpose: The purpose of this study was to examine the effect of a before-school running/walking club on children's physical activity and on-task behavior. Methods: Participants were third and fourth grade children from two schools in the Southwestern United States who participated in a before-school running/walking club that met two times each week. The study employed a two-phase experimental design with an initial baseline phase and an alternating treatments phase. Physical activity was monitored using pedometers and on-task behavior was assessed through systematic observation. Data analysis included visual analysis, descriptive statistics, as well as multilevel modeling. Results: Children accumulated substantial amounts of physical activity within the before-school program (School A: 1731 steps, 10:02 MVPA minutes; School B: 1502 steps, 8:30 MVPA minutes) and, on average, did not compensate by decreasing their physical activity during the rest of the school day. Further, on-task behavior was significantly higher on days the children attended the before-school program than on days they did not (School A=15.78%, pseudo-R2=.34 [strong effect]; School B=14.26%, pseudo-R2=.22 [moderate effect]). Discussion: Results provide evidence for the positive impact of before-school programs on children's physical activity and on-task behavior. Such programs do not take time away from academics and may be an attractive option for schools.
ContributorsStylianou, Michalis (Author) / Kulinna, Pamela H. (Thesis advisor) / Van Der Mars, Hans (Committee member) / Amazeen, Eric (Committee member) / Adams, Marc (Committee member) / Mahar, Matthew T. (Committee member) / Arizona State University (Publisher)
Created2014
153437-Thumbnail Image.png
Description
A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.
ContributorsBall, Brett Hunter (Author) / Brewer, Gene A. (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015
131532-Thumbnail Image.png
Description
Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at

Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at the relationship between Time Restricted Feeding (TRF), a method of intermittent fasting. TRF is something that can be easily adapted into an individual’s lifestyle and has been shown to have multiple advantages. This 8-week study began with 23 enrolled participants, but due to COVID-19 only 11 participants could be tested for cognition and blood ketone levels after week 4. All participants had similar ranges of weight, height, age, BMI, hip, and waist measurements at baseline. Moreover, these demographic variables were not related to ketone levels or cognition. The data indicate that ketone bodies increased in participants practicing TRF and that the increase in ketone bodies in the blood, specifically β-hydroxybutyrate was strongly correlated to increased cognitive function. This is consistent with theories that elevated ketone levels allowed for early hunter-gather communities and other mammals to survive prolonged periods of nutrient deprivation while keeping high cognitive function.
ContributorsTaha, Basel Mahmoud (Author) / Johnston, Carol (Thesis director) / Karen, Sweazea (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136298-Thumbnail Image.png
Description
This paper will explore what makes ‘good’ virtual reality, that is, what constitutes the virtual reality threshold. It will explain what this has to do with the temporary death of virtual reality, and argue that that threshold has now been crossed and true virtual reality is now possible, as evidenced

This paper will explore what makes ‘good’ virtual reality, that is, what constitutes the virtual reality threshold. It will explain what this has to do with the temporary death of virtual reality, and argue that that threshold has now been crossed and true virtual reality is now possible, as evidenced by the current wave of virtual reality catalyzed by the Oculus Rift. The Rift will be used as a case study for examining specific aspects of the virtual reality threshold.
ContributorsLittle, Rebecca Ann (Author) / Amresh, Ashish (Thesis director) / Ghazarian, Arbi (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136429-Thumbnail Image.png
Description
Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.
ContributorsCook, Meghan Olivia (Author) / McGraw, Kevin (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136032-Thumbnail Image.png
Description
This study tests if embodied cognition associated with self-movement in skateboarding can provide superior insight in physics problem-solving. Most people are relatively poor at deciphering which of several slopes will produce the faster downhill route for a rolling ball. Here, we replicate work by Rohrer and confirm that participants are

This study tests if embodied cognition associated with self-movement in skateboarding can provide superior insight in physics problem-solving. Most people are relatively poor at deciphering which of several slopes will produce the faster downhill route for a rolling ball. Here, we replicate work by Rohrer and confirm that participants are poor at this task when making predictions on a pen-and-paper test. Our principle hypothesis is that experience skateboarders should perform better than average when asked the equivalent question in the context of selecting the fastest skateboarding route between two different ramps. Our findings confirm that in a timed race, skateboarders are less prone to select a slower, but seemingly shorter, more constant-sloped route. When self-action is coupled to thinking in this way, it appears easier for participants to tap into a gut-level feeling for the overall speed advantage gained by descending more sharply earlier in time. The finding supports a physics pedagogy in which participants consider the problem from the perspective of the descending ball, which allows utilization of embodied cognitive resources that produce superior physics insight. This is the first study to demonstrate that skateboarding ought not to be viewed merely as a renegade hobby, but rather as an activity that holds promise for improving academic performance.
ContributorsZautra, Nicholas (Author) / Barrett, The Honors College (Contributor)
Created2011-12
133178-Thumbnail Image.png
Description
Simulation theory states that text comprehension is achieved by simulating (or imagining) text content using motor, perceptual, and emotional systems. Hence, motor skill should correlate with comprehension skill. In fact, previous research has linked fine motor skills (FMS) with word processing and mathematical skills. I predicted a positive relationship between

Simulation theory states that text comprehension is achieved by simulating (or imagining) text content using motor, perceptual, and emotional systems. Hence, motor skill should correlate with comprehension skill. In fact, previous research has linked fine motor skills (FMS) with word processing and mathematical skills. I predicted a positive relationship between FMS and reading comprehension. Children enrolled in a reading comprehension intervention were assessed on FMS using the Movement ABC-2. There was a significant correlation between FMS and comprehension of narrative texts, but contrary to the prediction, the correlation was negative. Also unexpected, the control condition performed better on comprehension questions than the intervention conditions. To try to understand these results, we examined the time each child took to answer the comprehension questions. Many children answered the questions quickly, and average time to answer the questions was strongly correlated with comprehension scores. Children may have been answering questions quickly (and randomly) in order to advance to the next story. Nonetheless, the data do not support a relationship between FMS and reading comprehension.
ContributorsWeiss, Julia (Author) / Glenberg, Arthur (Thesis director) / Gomez Franco, Ligia (Committee member) / Peter, Beate (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132447-Thumbnail Image.png
Description
The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions from active learning to sedentary/lecture style teaching. Research compiled indicated

The purpose of this study was to develop proposal lesson plans for 4th-6th graders based on active learning to integrate movement physical activity into the curriculum. The 4th-6th graders were chosen, as this is the age where teaching typically transitions from active learning to sedentary/lecture style teaching. Research compiled indicated positive effects of active based learning on children such as increased attention span, retention, and general focus. A survey was created to not only assess the perception of active versus didactic learners, but to also assess the effects of movement-based learning on the variables that research claimed to change. The lesson plans developed here should be transferable to a classroom lesson to evaluate the hypothesized results.
ContributorsTanna, Nimisha (Author) / Hyatt, JP (Thesis director) / Ainsworth, Barbara (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133870-Thumbnail Image.png
Description
Both dialogic reading and embodied cognition have showed to be effective strategies in the development of early literacy skills. Additionally, the use of electronic books has been found to also have a positive effect, including in combination with dialogic reading. The effectiveness of dialogic reading and embodied strategy while reading

Both dialogic reading and embodied cognition have showed to be effective strategies in the development of early literacy skills. Additionally, the use of electronic books has been found to also have a positive effect, including in combination with dialogic reading. The effectiveness of dialogic reading and embodied strategy while reading an e-book has not been compared. The purpose of the study is to determine if embodied cognition can improve dialogic reading practices and possibly offer a theoretical framework for why dialogical reading practices work. Additionally, this study aims to determine the impact of embodied cognition and dialogic reading on the development of both vocabulary and story recall skills in preschool-aged children. Twenty-nine preschool children between the ages of 3 and 5 years old took part in a matched pairs experiment that included reading an e-book. Children in the experimental groups received four readings of either an embodied cognition condition or a dialogic reading condition. Following the four readings, the groups switched treatment. The children who received the embodied cognition conditions scored significantly higher on both story recall and vocabulary acquisition compared to those in the dialogic reading and control groups. Results of the study suggest embodied cognition in conjugation with dialogic reading practices could provide a more effective and improved model for promoting early literacy skills.
ContributorsMedrano, Danielle Alessandra (Author) / Glenberg, Arthur (Thesis director) / Kupfer, Anne (Committee member) / Gomez, Ligia (Committee member) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05