Matching Items (9)
Filtering by

Clear all filters

156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
ContributorsKurgan, Gavin (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
136282-Thumbnail Image.png
Description
Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield

Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield and accumulation that results from high product toxicity. This paper examines two methods of product toxicity mitigation: the use of efflux pumps and the separation of pathways which produce less toxic intermediates. A library of 43 efflux pumps from various organisms were screened for their potential to confer resistance to phenol, 2-phenylethanol, and styrene on an E. coli host. A pump sourced from P. putida was found to allow for increased host growth in the presence of styrene as compared to a cell with no efflux pump. The separation of styrene producing pathway was also investigated. Cells capable of performing the first and latter halves of the synthesis were allowed to grow separately and later combined in order to capitalize on the relatively lower toxicity of the intermediate, trans-cinnamate. The styrene production and yield from this separated set of cultures was compared to that resulting from the growth of cells containing the full set of styrene synthesis genes. Results from this experiment were inconclusive.
ContributorsLallmamode, Noor Atiya Jabeen (Author) / Nielsen, David (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134586-Thumbnail Image.png
Description
The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to

The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to only consume xylose and the other only glucose. This allows for co-utilization of lignocellulose-derived sugars so both sugars are completely consumed, residence time is reduced and lactate and ethanol titers are maximized.
ContributorsAyla, Zeynep Ece (Author) / Nielsen, David (Thesis director) / Flores, Andrew (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133504-Thumbnail Image.png
Description
Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in

Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in parallel to the biosynthesis of the desired biofuel or biochemical product, and limits product concentrations and yields. Stopping cell growth can improve chemical production since more resources will go toward chemical production than toward biomass. The goal of the project is to test different methods of controlling microbial uptake of nutrients, specifically phosphate, to dynamically limit cell growth and improve biochemical production of E. coli, and the research has the potential to promote public health, sustainability, and environment. This can be achieved by targeting phosphate transporter genes using CRISPRi and CRISPR, and they will limit the uptake of phosphate by targeting the phosphate transporter genes in DNA, which will stop transcriptions of the genes. In the experiment, NST74∆crr∆pykAF, a L-Phe overproducer, was used as the base strain, and the pitA phosphate transporter gene was targeted in the CRISPRi and CRISPR systems with the strain with other phosphate transporters knocked out. The tested CRISPRi and CRISPR mechanisms did not stop cell growth or improved L-Phe production. Further research will be conducted to determine the problem of the system. In addition, the CRISPRi and CRISPR systems that target multiple phosphate transporter genes will be tested in the future as well as the other method of stopping transcriptions of the phosphate transporter genes, which is called a tunable toggle switch mechanism.
ContributorsPark, Min Su (Author) / Nielsen, David (Thesis director) / Machas, Michael (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135485-Thumbnail Image.png
Description
Four enzymes, ATF1, ATF2, ATF, and CAT, were screened to determine which would be most effective at catalyzing the formation of aromatic esters. The CAT enzyme successfully catalyzed the reaction to produce 2-phenethyl acetate using 20x more lysate to improve the probability of enzyme presence in the lysate. The CAT

Four enzymes, ATF1, ATF2, ATF, and CAT, were screened to determine which would be most effective at catalyzing the formation of aromatic esters. The CAT enzyme successfully catalyzed the reaction to produce 2-phenethyl acetate using 20x more lysate to improve the probability of enzyme presence in the lysate. The CAT enzyme was able to catalyze the reaction producing concentrations that increased by 62% every 12 hours. Enzymatic activity resulted in the production of 2.15 mg/L of 2-phenethyl acetate at 12 hours, 5.62 mg/L of 2-phenethyl acetate at 24 hours, and 15.12 mg/L of 2-phenethyl acetate at 48 hours.
ContributorsBrown, Kristen Ashley (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171479-Thumbnail Image.png
Description
The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular

The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular biological factories with individualized subunits that function in concert to create novel peptides.One element at the heart of environmental health debates today is plastics. Biodegradable alternatives for petroleum-based plastics is a necessity. One NRPS, cyanophycin synthetase (CphA), can produce cyanophycin grana protein (CGP), a polymer composed of a poly-aspartic acid backbone with arginine side chains. The aspartic backbone has the potential to replace synthetic polyacrylate, although current production costs are prohibitive. In Chapter 2, a CphA variant from Tatumella morbirosei is characterized, that produces up to 3x more CGP than other known variants, and shows high iCGP specificity in both flask and bioreactor trials. Another CphA variant, this one from Acinetobacter baylyi, underwent rational protein design to create novel mutants. One, G217K, is 34% more productive than the wild type, while G163K produces a CGP with shorter chain lengths. The current structure refined from 4.4Å to 3.5Å. Another exciting application of NRPSs is in healthcare. They can be used to generate novel peptides such as complex antibiotics. A recently discovered iterative polyketide synthase (IPTK), dubbed AlnB, produces an antibiotic called allenomycin. One of the modular subunits, a dehydratase named AlnB_DH, was crystallized to 2.45Å. Several mutations were created in multiple active site residues to help understand the functional mechanism of AlnB_DH. A preliminary holoenzyme AlnB structure at 3.8Å was generated although the large disorganized regions demonstrated an incomplete structure. It was found that chain length is the primary factor in driving dehydratase action within AlnB_DH, which helps lend understanding to this module.
ContributorsSwain, Kyle (Author) / Nannenga, Brent (Thesis advisor) / Nielsen, David (Committee member) / Mills, Jeremy (Committee member) / Seo, Eileen (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2022
171698-Thumbnail Image.png
Description
The current use of non-renewable fossil fuels for industry poses a threat for future generations. Thus, a pivot to renewable sources of energy must be made to secure a sustainable future. One potential option is the utilization of metabolically engineered bacteria to produce value-added chemicals during fermentation. Currently, numerous strains

The current use of non-renewable fossil fuels for industry poses a threat for future generations. Thus, a pivot to renewable sources of energy must be made to secure a sustainable future. One potential option is the utilization of metabolically engineered bacteria to produce value-added chemicals during fermentation. Currently, numerous strains of metabolically engineered Escherichia coli have shown great capacity to specialize in the production of high titers of a desired chemical. These metabolic systems, however, are constrained by the biological limits of E. coli itself. During fermentation, E. coli grows to less than one twentieth of the density that aerobically growing cultures can reach. I hypothesized that this decrease in growth during fermentation is due to cellular stress associated with fermentative growth, likely caused by stress related genes. These genes, including toxin-antitoxin (TA) systems and the rpoS mediated general stress response, may have an impact on fermentative growth constraints. Through transcriptional analysis, I identified that the genes pspC and relE are highly expressed in fermenting strains of both wild type and metabolically engineered E. coli. Fermentation of toxin gene knockouts of E. coli BW25113 revealed their potential impacts on E. coli fermentation. The inactivation of ydcB, lar, relE, hipA, yjfE, chpA, ygiU, ygjN, ygfX, yeeV, yjdO, yjgK and ydcX did not lead to significant changes in cell growth when tested using sealed tubes under microaerobic conditions. In contrast, inactivation of pspC, yafQ, yhaV, yfjG and yoeB increased cell growth after 12 hours while inactivation yncN significantly arrested cell growth in both tube and fermentation tests, thus proving these toxins’ roles in fermentative growth. Moreover, inactivation of rpoS also significantly hindered the ability of E. coli to ferment, suggesting its important role in E. coli fermentation
ContributorsHernandez, Michaella (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2022
164979-Thumbnail Image.png
Description

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or improving inherent esterification pathways. However, due to inequality in the biosynthesis of esters and their precursors (organic acid and alcohol), a significant amount of precursors are left unconverted, thereby lowering overall esterification efficiency. Therefore, the primary goal of the current research is to improve the ester titers by incorporating one more step of in vitro esterification with the culture broth, thereby esterifying the unconverted precursors using high efficiency commercial enzymes in the presence of compatible organic solvent. In principle, the medium containing the precursors will be treated with the enzyme in presence of organic solvent, where the precursors will be distributed in both the phases, aqueous and organic, based on their polarity, and the enzymatic esterification will happen at the interface. Hence, as a first step, efforts were made to optimize the reaction conditions, beginning with choosing the most efficient organic solvent and corresponding enzyme candidate. Our results showed that, for production of ethyl acetate through this reactive extraction approach, Novozyme435 exhibited significant esterification with chloroform, with almost 85% conversion efficiency. Further optimizations with phase ratios, pH and incubation time showed that the pH 6.0 (3.1 g/L) was the most optimum where ethyl acetate titer was found to improve 10 times than that at pH 7.0 (0.164 g/L) with the phase ratio of 1:1. The kinetic studies further added that the incubation at 37oC gives the maximum ethyl acetate production within 8h. After initial optimization studies, cell broth from E. coli cells transformed to overproduce an esterase was also tested with the reactive extraction method. It was found that there was a ~7.5X decrease in ethyl acetate production in the cell media versus synthetic samples with the same concentration of reactants. Such a large decrease indicates that enzymatic promiscuity or inhibition currently prevent the cell samples from reaching the same conversion as synthetic studies. To characterize the maximum reaction rate (Vmax) and affinity constants of the substrates to Novozym 435, further kinetic studies were performed with one minute of reaction. The mathematical model employed assumes that enzyme kinetics rather than diffusion was the rate limiting step, that the concentrations of reactants at the interface are equivalent to the initial concentration of reactants, and that neither substrate is an inhibitor. Vmax was found to be 18.5 Mmol min-1g-1 (of catalyst used), and the affinity constants were 0.957 M and 0.00557 M for acetic acid and ethanol respectively. Vmax was similar to literature values with Novozym 435, and the affinity constants indicate a much higher binding efficiency of ethanol in comparison to acetic acid, indicating that a cocktail of esters are likely produced from Novozym 435 in cell broth. Overall, moving away from fossil-fuel dependence is necessary to promote sustainable industry standards, and microbial cell factories combined with reactive extraction, if optimized for industrial applications, can replace harmful environmental procedures. By optimizing the reactive extraction process for ester production, biorefineries could become more competitive and economically feasible for numerous applications.

ContributorsKartchner, Danika (Author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Soundappan, Thiagarajan (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05