Matching Items (7)
Filtering by

Clear all filters

150993-Thumbnail Image.png
Description
Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit

Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit unique properties such as increased chemical reactivity due to high specific surface area to volume ratios. Bacteria play a major role in many natural and engineered biogeochemical reactions in wastewater treatment plants and other environmental compartments. I have evaluated the laboratory isolates of E. coli, Bacillus, Alcaligenes, Pseudomonas; wastewater isolates of E. coli and Bacillus; and pathogenic isolate of E. coli for their response to 50 & 100 nm sized Cu nanoparticles (CuNPs). Bactericidal tests, scanning electron microscopy (SEM) analyses, and probable toxicity pathways assays were performed. The results indicate that under continuous mixing conditions, CuNPs are effective in inactivation of the selected bacterial isolates. In general, exposure to CuNPs resulted in 4 to >6 log reduction in bacterial population within 2 hours. Based on the GR, LDH and MTT assays, bacterial cells showed different toxicity elicitation pathways after exposure to CuNPs. Therefore, it can be concluded that the laboratory isolates are good candidates for predicting the behavior of environmental isolates exposed to CuNPs. Also, high inactivation values recorded in this study suggest that the presence of CuNPs in different environmental compartments may have an impact on pollutants attenuation and wastewater biological treatment processes. These results point towards the need for an in depth investigation of the impact of NPs on the biological processes; and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.
ContributorsAlboloushi, Ali (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2012
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
156721-Thumbnail Image.png
Description
Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released

Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released by heterotrophic bacteria within the soil in the absence of O2. To better understand how neighboring bacterial communities can influence methanogenesis, the isolation and physiological characterization of two novel isolates, one Methanoarchaeal isolate and one Acidobacterium isolate identified as QU12MR and R28S, respectively, were targeted in this present study. Co-culture growth in varying temperatures of the QU12MR isolate paired with an isolated Clostridium species labeled R32Q and the R28S isolate were also investigated for possible influences in CH4 production. Phylogenetic analysis of strain QU12MR was observed as a member of genus Methanobacterium sharing 98% identity similar to M. arcticum strain M2 and 99% identity similar to M. uliginosum strain P2St. Phylogenetic analysis of strain R28S was associated with genus Acidicapsa from the phylum Acidobacteria, sharing 97% identity to A. acidisoli strain SK-11 and 96% identity similarity to Occallatibacter savannae strain A2-1c. Bacterial co-culture growth and archaeal CH4 production was present in the five temperature ranges tested. However, bacterial growth and archaeal CH4 production was less than what was observed in pure culture analysis after 21 days of incubation.
ContributorsRamirez, Zeni Elizia (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Roberson, Robert (Thesis advisor) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2018
171499-Thumbnail Image.png
Description
Chemical fertilizers are commonly used for controlled environment agriculture because they provide essential plant nutrient efficiently. However, rising fertilizer costs, global phosphorous shortage, and the negative impacts of producing and using chemical fertilizer are concerns for sustainable crop production. As sustainable alternatives to chemical fertilizers, there is a growing interest

Chemical fertilizers are commonly used for controlled environment agriculture because they provide essential plant nutrient efficiently. However, rising fertilizer costs, global phosphorous shortage, and the negative impacts of producing and using chemical fertilizer are concerns for sustainable crop production. As sustainable alternatives to chemical fertilizers, there is a growing interest in using organic fertilizers with beneficial plant growth promoting microorganisms. The objectives of this research were to investigate how the application of plant growth promoting bacteria and arbuscular mycorrhizal fungi influences plant growth of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) seedlings in soilless media under organic fertilization. In the first study, the effects of Azosprillium brasilense and Rhizophagus intraradices inoculation on lettuce and tomato seedling growth were quantified under two different organic fertilizer types compared to under chemical fertilizer. The results showed that A. brasilense and R. intraradices had little to no effect on any growth parameter measured in either species regardless of fertilizer type. In the second study, an investigation of the co-inoculation of A. brasilense and R. intraradices or increasing the application frequency of A. brasilense or/and R. intraradices increased plant growth promoting effects in lettuce ‘Cherokee’ and ‘Rex’ grown under organic fertilization. An application frequency of every 2-days of the R. intraradices without or with A. brasilense increased shoot fresh weight in both lettuce cultivars by 51-58%, compared to un-inoculated control. In contrast, lettuce seedling growth were similar without or with applying R. intraradices weekly or A. brasilense regardless of frequency. Together, the results suggest that applying R. intraradices with a proper application frequency can enhance plant growth of lettuce under organic fertilization.
ContributorsMcClintic, Nicklas Charles (Author) / Park, Yujin (Thesis advisor) / Penton, Christopher R (Committee member) / Chen, Changbin (Committee member) / Arizona State University (Publisher)
Created2022
Description
Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms

Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms shaped their images, and their images and concepts were shaped by the contexts in which they were working. Over time, the interplay of images and concepts in various research contexts participated in the development of new concepts related to microorganisms, like the “biofilm” concept, or the idea that bacteria exist in nature as complex aggregates attached to surfaces via extracellular polymeric matrices. Many histories of microbiology locate the origin of the biofilm concept in the 1970s, but that date obscures the rich history of research about attached microbial aggregates that occurred throughout the history of microbiology. I discovered how the interplay of images and concepts related to bacteria participated in the development of the biofilm concept by documenting when and why researchers used different visual features to represent changing concepts related to microorganisms. I specifically examined how and why scientists represented evolving concepts related to bacteria during the 17th century (Chapter 1), from the late 17th century to the early 20th century (Chapter 2), and during the first seventy-four years of the 20th century (Chapter 3). I discovered the biofilm concept developed in at least three unique research contexts during the 20th century, and how images reflected and shaped the concept’s development in each case. The narrative and collection of images generated from this work serve as a visual history of the development of scientists’ ideas about the nature of bacteria over 300 years.
ContributorsGuerrero, Anna Clemencia (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Committee member) / Sterner, Beckett (Committee member) / Matlin, Karl (Committee member) / Arizona State University (Publisher)
Created2023
161499-Thumbnail Image.png
Description
Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along

Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along with the understanding of the biological and chemical activities that drive those processes. The kinetics and stoichiometry of traditional and shortcut nitrogen removal reactions are generally well understood to date. However, the thermodynamics of those processes are complex and deserve additional research to better understand the dominant factors that drive cell synthesis. Additionally, the implementation of nitrogen shortcut techniques can reduce the footprint of wastewater treatment processes that implement nitrogen removal by approximately 5 percent and can reduce operating costs by between 12 and 26 percent annually. Combined, nitrogen shortcut techniques can contribute to significant reduction in the long-term cost to operate, due to lower energy and consumable requirements, fast reaction times resulting in shorter solids retention times, and improvement efficiency in nitrogen removal from wastewater. This dissertation explores and defines the dominant factors that contribute to the success of efficiencies in traditional and shortcut nitrogen removal techniques, focusing on the natural microbiological processes. The culmination of these efforts was used to develop decision matrices to promote consideration of nitrogen shortcut techniques by practitioners during conceptual planning and design of wastewater treatment facilities.
ContributorsTack, Frederick Henry (Author) / Fox, Peter (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Abbaszadegan, Morteza (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021
158570-Thumbnail Image.png
Description
Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic

Decay of plant litter represents an enormous pathway for carbon (C) into the atmosphere but our understanding of the mechanisms driving this process is particularly limited in drylands. While microbes are a dominant driver of litter decay in most ecosystems, their significance in drylands is not well understood and abiotic drivers such as photodegradation are commonly perceived to be more important. I assessed the significance of microbes to the decay of plant litter in the Sonoran Desert. I found that the variation in decay among 16 leaf litter types was correlated with microbial respiration rates (i.e. CO2 emission) from litter, and rates were strongly correlated with water-vapor sorption rates of litter. Water-vapor sorption during high-humidity periods activates microbes and subsequent respiration appears to be a significant decay mechanism. I also found that exposure to sunlight accelerated litter decay (i.e. photodegradation) and enhanced subsequent respiration rates of litter. The abundance of bacteria (but not fungi) on the surface of litter exposed to sunlight was strongly correlated with respiration rates, as well as litter decay, implying that exposure to sunlight facilitated activity of surface bacteria which were responsible for faster decay. I also assessed the response of respiration to temperature and moisture content (MC) of litter, as well as the relationship between relative humidity and MC. There was a peak in respiration rates between 35-40oC, and, unexpectedly, rates increased from 55 to 70oC with the highest peak at 70oC, suggesting the presence of thermophilic microbes or heat-tolerant enzymes. Respiration rates increased exponentially with MC, and MC was strongly correlated with relative humidity. I used these relationships, along with litter microclimate and C loss data to estimate the contribution of this pathway to litter C loss over 34 months. Respiration was responsible for 24% of the total C lost from litter – this represents a substantial pathway for C loss, over twice as large as the combination of thermal and photochemical abiotic emission. My findings elucidate two mechanisms that explain why microbial drivers were more significant than commonly assumed: activation of microbes via water-vapor sorption and high respiration rates at high temperatures.
ContributorsTomes, Alexander (Author) / Day, Thomas (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Ball, Becky (Committee member) / Hall, Sharon (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2020