Matching Items (1,419)
Filtering by

Clear all filters

ContributorsMoonitz, Olivia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-13
ContributorsAnderle, Jeff (Performer) / Wegehaupt, David (Performer) / Bennett, Joshua (Performer) / Clements, Katrina (Performer) / Dominguez, Vincent (Performer) / Druesedow, Libby (Performer) / Englert, Patrick (Performer) / Liang, Jack (Performer) / Moonitz, Olivia (Performer) / Ruth, Jeremy (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-09
ContributorsNeidermayer, Tyler (Performer) / Karam, Andrea Luque (Performer) / White, Jonathan (Performer) / Manka, Andrew (Performer) / Chaston, Aubrey (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
135929-Thumbnail Image.png
Description
With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the technology and information available today, the amount of biomass that would need to be produced is not economically feasible. In this work, I examined a possible factor impacting the growth of a model cyanobacterium, Synechocystis sp. PCC6803, which is heterotrophic bacteria communities accompanying the cyanobacteria. I experimented with three variables: the type of heterotrophic bacteria strain, the initial concentration of heterotrophic bacteria, and the addition of a carbon source (glucose) to the culture. With experimental information, I identified if given conditions would increase Synechocystis growth and thus increase the yield of biomass. I found that under non-limiting growth conditions, heterotrophic bacteria do not significantly affect the growth of Synechocystis or the corresponding biomass yield. The initial concentration of heterotrophic bacteria and the added glucose also did not affect the growth of Synechocystis. I did see some nutrient recycling from the heterotrophic bacteria as the phosphate levels in the growth medium were depleted, which was apparent from prolonged growth phase and higher levels of reactive phosphate in the media.
ContributorsCahill, Brendan Robert (Author) / Rittmann, Bruce (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / W. P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135949-Thumbnail Image.png
Description
Legionella is a gram-negative bacterium with the ability for human infection by inhalation or aspiration of water containing the bacteria. Legionella live in aquatic environments and have been identified in cooling towers, humidifiers and respiratory therapy treatments, among others. Infection with Legionella bacteria leads to Legionnaire’s Disease or Pontiac Fever

Legionella is a gram-negative bacterium with the ability for human infection by inhalation or aspiration of water containing the bacteria. Legionella live in aquatic environments and have been identified in cooling towers, humidifiers and respiratory therapy treatments, among others. Infection with Legionella bacteria leads to Legionnaire’s Disease or Pontiac Fever (Edelstein, 1993). Information regarding the means of aerosolization of Legionella bacteria has not yet been reported, therefore the relevance of experimentation was defined. The objective of this study is to determine the modes by which bacteria may be aerosolized under laboratory conditions. Specifically, to measure the amount of bacteria transported over a specific distance in a given amount of time and determine the most effective mode of bacterial aerosolization. Three methods of bacterial aerosolization were tested, these included an electric paint sprayer, an air paint sprayer and a hand-held spray bottle. E. coli was used as a surrogate for Legionella in experimentation due to its similar bacterial properties. Both bacteria are gram-negative, aerobic bacilli while Legionella is approximately 2 μm in length (Botzenhart, 1998), and E. coli is between 1 and 3 μm in length (Reshes, 2007). The accessibility and non-pathogenicity of E. coli also served as factors for the substitution.
In order to measure the aerosolization efficiency of each spray method, an air sampler was placed opposite to the position of the sprayer, on either side of a sealed box. Each sprayer was filled with E. coli concentrated at 104 CFU/ml in a PBS solution and sprayed for a time span of 1 and 5 seconds. For each of these time intervals an air sample was collected immediately following the spray as well as 5 minutes after the spray. Compared to the other two methods, the air spray method consistently showed the highest number of bacterial cells aerosolized. While all three methods resulted in the aerosolization of bacteria, the results determined the Air Spray method as the most efficient means of bacterial aerosolization. In this study, we provide a practical and efficient method of bacterial aerosolization for microbial dispersion in air. The suggested method can be used in future research for microbial dispersion and transmission studies.
In addition, a humidifier was filled with a spiked solution of E. coli and operated for a period of 1 and 5 seconds at its maximum output. Air samples were collected after 0 and 5 minutes. Immediately after the humidifier operation was stopped a small number of colonies were detected in the air sample and no colonies were detected in the air sample collected after a 5-minute elapsed time. This experiment served as a proof of concept for airborne pathogen’s transmission by a humidifier.
ContributorsJohnson, Chelsea Elizabeth (Author) / Abbaszadegan, Morteza (Thesis director) / Stout, Valerie (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
ContributorsASU Library. Music Library (Publisher)
Created2018-09-17
ContributorsSpring, Robert (Performer) / Gardner, Joshua (Performer) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Micklich, Albie (Performer) / Ericson, John Q. (John Quincy), 1962- (Performer) / Smith, J. B., 1957- (Performer) / Ryan, Russell (Contributor) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsZhu, Shuang (Performer) / Spring, Robert (Performer) / Zhang, Aihua (Performer) / Skinner, Wesley (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-09
147582-Thumbnail Image.png
Description

Moraxella catarrhalis is a gram negative commensal bacteria that is a primary cause of otitis media in infants and severe exacerbations of COPD in adults. M. catarrhalis treatment has become increasingly difficult and expensive over the past half-century due to the emergence of beta-lactamase producing strains. There are currently no

Moraxella catarrhalis is a gram negative commensal bacteria that is a primary cause of otitis media in infants and severe exacerbations of COPD in adults. M. catarrhalis treatment has become increasingly difficult and expensive over the past half-century due to the emergence of beta-lactamase producing strains. There are currently no vaccines available to protect against infections. In this paper, we propose a transcriptomics-based approach for identifying potential vaccine targets. Additionally, a novel method was used to create bacterial vaccine polypeptides composed of sequence conserved peptides secreted through the outer membrane. Polypeptides were tested for immunogenicity and protective capacity in mice. We show that relative abundance of outer membrane proteins does not correlate with immunogenicity. We also show promising results for polypeptide protection in a mouse pulmonary clearance model.

ContributorsRobinson, Aspen Grace (Author) / Stull, Terrence (Thesis director) / Whitby, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148119-Thumbnail Image.png
Description

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from

Locusts are generalist herbivores meaning that they are able to consume a variety of plants. Because of their broad diet, and ability to respond rapidly to a favorable environment with giant swarms of voracious insects, they are dangerous pests. Their potential impacts on humans increase dramatically when individuals switch from their solitarious phase to their gregarious phase where they congregate and begin marching and eventually swarming together. These swarms, often billions strong, can consume the vegetation of enormous swaths of land and can travel hundreds of kilometers in a single day producing a complex threat to food security. To better understand the biology of these important pests we explored the gut microbiome of the South American locust (Schistocerca cancellata). We hypothesized generally that the gut microbiome in this species would be critically important as has been shown in many other species. We extracted and homogenized entire guts from male S. cancellata, and then extracted gut microbiome genomic DNA. Genomic DNA was then confirmed on a gel. The initial extractions were of poor quality for sequencing, but subsequent extractions performed by collaborators during troubleshooting at Southern Illinois University Edwardsville proved more useful and were used for PCR. This resulted in the detections of the following bacterial genera in the gut of S. cancellata: Enterobacter, Enterococcus, Serratia, Pseudomonas, Actinobacter, and Weisella. With this data, we are able to speculate about the physiological roles that they hold within the locust gut generating hypotheses for further testing. Understanding the microbial composition of this species’ gut may help us better understand the locust in general in an effort to more sustainably manage them.

ContributorsGrief, Dustin (Author) / Overson, Rick (Thesis director) / Cease, Arianne (Committee member) / Peterson, Brittany (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05