Matching Items (3)
Filtering by

Clear all filters

156988-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.

One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:

(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,

(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),

(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors

(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,

(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),

(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),

(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),

(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.

The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.

The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
ContributorsLu, Shi (Author) / Rodriguez, Armando A. (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2018
156713-Thumbnail Image.png
Description
In this dissertation, we present a H-infinity based multivariable control design methodology that can be used to systematically address design specifications at distinct feedback loop-breaking points. It is well understood that for multivariable systems, obtaining good/acceptable closed loop properties at one loop-breaking point does not mean the same at another.

In this dissertation, we present a H-infinity based multivariable control design methodology that can be used to systematically address design specifications at distinct feedback loop-breaking points. It is well understood that for multivariable systems, obtaining good/acceptable closed loop properties at one loop-breaking point does not mean the same at another. This is especially true for multivariable systems that are ill-conditioned (having high condition number and/or relative gain array and/or scaled condition number). We analyze the tradeoffs involved in shaping closed loop properties at these distinct loop-breaking points and illustrate through examples the existence of pareto optimal points associated with them. Further, we study the limitations and tradeoffs associated with shaping the properties in the presence of right half plane poles/zeros, limited available bandwidth and peak time-domain constraints. To address the above tradeoffs, we present a methodology for designing multiobjective constrained H-infinity based controllers, called Generalized Mixed Sensitivity (GMS), to effectively and efficiently shape properties at distinct loop-breaking points. The methodology accommodates a broad class of convex frequency- and time-domain design specifications. This is accomplished by exploiting the Youla-Jabr-Bongiorno-Kucera parameterization that transforms the nonlinear problem in the controller to an affine one in the Youla et al. parameter. Basis parameters that result in efficient approximation (using lesser number of basis terms) of the infinite-dimensional parameter are studied. Three state-of-the-art subgradient-based non-differentiable constrained convex optimization solvers, namely Analytic Center Cutting Plane Method (ACCPM), Kelley's CPM and SolvOpt are implemented and compared.

The above approach is used to design controllers for and tradeoff between several control properties of longitudinal dynamics of 3-DOF Hypersonic vehicle model -– one that is unstable, non-minimum phase and possesses significant coupling between channels. A hierarchical inner-outer loop control architecture is used to exploit additional feedback information in order to significantly help in making reasonable tradeoffs between properties at distinct loop-breaking points. The methodology is shown to generate very good designs –- designs that would be difficult to obtain without our presented methodology. Critical control tradeoffs associated are studied and compared with other design methods (e.g., classically motivated, standard mixed sensitivity) to further illustrate its power and transparency.
ContributorsPuttannaiah, Karan (Author) / Rodriguez, Armando A. (Thesis advisor) / Berman, Spring M. (Committee member) / Mittelmann, Hans D. (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2018
Description
Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low

Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low level control. The low level control system is designed to track reference Euler angles (roll, pitch and yaw) as shown in previous work [1],[2]. The high level control is designed to track reference X, Y, and Z axis states [3]. The objective of this paper is to model, design and simulate platooning (separation) control for a fleet of 6 quadcopter units, each comprising of high and low level control systems, using a leader-follower approach. The primary motivation of this research is to examine the ”accordion effect”, a phenomenon observed in leader-follower systems due to which positioning or spacing errors arise in follower vehicles due to sudden changes in lead vehicle velocity. It is proposed that the accordion effect occurs when lead vehicle information is not directly communicated with the rest of the system [4][5] . In this paper, the effect of leader acceleration feedback is observed for the quadcopter platoon. This is performed by first designing a classical platoon controller for a nominal case, where communication within the system is purely ad-hoc (i.e from one quadcopter to it’s immediate successor in the fleet). Steady state separation/positioning errors for each member of the fleet are observed and documented during simulation. Following this analysis, lead vehicle acceleration is provided to the controller (as a feed forward term), to observe the extent of it’s effect on steady state separation, specifically along tight maneuvers. Thus the key contribution of this work is a controller that stabilizes a platoon of quadcopters in the presence of the accordion effect, when employing a leader-follower approach. The modeling shown in this paper builds on previous research to design a low costquadcopter platform, the Mark 3 copter [1]. Prior to each simulation, model nonlinearities and hardware constants are measured or derived from the Mark 3 model, in an effort to observe the working of the system in the presence of realistic hardware constraints. The system is designed in compliance with Robot Operating System (ROS) and the Micro Air Vehicle Link (MAVLINK) communication protocol.
ContributorsSrinivasan, Anshuman (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021