Matching Items (4)
Filtering by

Clear all filters

152420-Thumbnail Image.png
Description
This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control

This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).
ContributorsSridharan, Srikanth (Author) / Rodriguez, Armando A (Thesis advisor) / Mittelmann, Hans D (Committee member) / Si, Jennie (Committee member) / Tsakalis, Konstantinos S (Committee member) / Arizona State University (Publisher)
Created2014
150982-Thumbnail Image.png
Description
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
ContributorsDickeson, Jeffrey James (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Wells, Valana (Committee member) / Kawski, Mattias (Committee member) / Arizona State University (Publisher)
Created2012
156988-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.

One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:

(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,

(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),

(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors

(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,

(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),

(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),

(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),

(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.

The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.

The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
ContributorsLu, Shi (Author) / Rodriguez, Armando A. (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2018
Description
Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low

Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low level control. The low level control system is designed to track reference Euler angles (roll, pitch and yaw) as shown in previous work [1],[2]. The high level control is designed to track reference X, Y, and Z axis states [3]. The objective of this paper is to model, design and simulate platooning (separation) control for a fleet of 6 quadcopter units, each comprising of high and low level control systems, using a leader-follower approach. The primary motivation of this research is to examine the ”accordion effect”, a phenomenon observed in leader-follower systems due to which positioning or spacing errors arise in follower vehicles due to sudden changes in lead vehicle velocity. It is proposed that the accordion effect occurs when lead vehicle information is not directly communicated with the rest of the system [4][5] . In this paper, the effect of leader acceleration feedback is observed for the quadcopter platoon. This is performed by first designing a classical platoon controller for a nominal case, where communication within the system is purely ad-hoc (i.e from one quadcopter to it’s immediate successor in the fleet). Steady state separation/positioning errors for each member of the fleet are observed and documented during simulation. Following this analysis, lead vehicle acceleration is provided to the controller (as a feed forward term), to observe the extent of it’s effect on steady state separation, specifically along tight maneuvers. Thus the key contribution of this work is a controller that stabilizes a platoon of quadcopters in the presence of the accordion effect, when employing a leader-follower approach. The modeling shown in this paper builds on previous research to design a low costquadcopter platform, the Mark 3 copter [1]. Prior to each simulation, model nonlinearities and hardware constants are measured or derived from the Mark 3 model, in an effort to observe the working of the system in the presence of realistic hardware constraints. The system is designed in compliance with Robot Operating System (ROS) and the Micro Air Vehicle Link (MAVLINK) communication protocol.
ContributorsSrinivasan, Anshuman (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021