Matching Items (2)
Filtering by

Clear all filters

151015-Thumbnail Image.png
Description
Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or

Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or 'bug' values. The hypothesis tested was that a non-linear fisheye presentation (made possible by modern display technology) would maintain the essential functionality and compactness of existing moving tape displays while increasing situational awareness by ecologically displaying a wider set of reference values. Experimentation showed that the speed and accuracy of reading the center system value was not significantly changed with two types of expanded range displays. The limited situational awareness tests did not show a significant improvement with the new displays, but since no functionality was degraded further testing of expanded range displays may be productive.
ContributorsEnglish, Dave (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher A (Committee member) / Arizona State University (Publisher)
Created2012
158874-Thumbnail Image.png
Description
Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict

Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict a human error event, Loss of Separation (LOS). Six retired air traffic controllers were recruited and tested in three conditions of varying workload in an Terminal Radar Approach Control Facility (TRACON) arrival radar simulation. Communication transcripts from simulated trials were transcribed and coding schemes for Closed Loop Communication Deviations (CLCD) were applied. Results of the study demonstrated a positive correlation between CLCD and LOS, indicating that CLCD could be a variable used to predict LOS. However, more research is required to determine if CLCD can be used to predict LOS independent of other predictor variables, and if CLCD can be used in a model that considers many different predictor variables to predict LOS.
ContributorsLieber, Christopher Shane (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020