Matching Items (7)
Filtering by

Clear all filters

151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
150833-Thumbnail Image.png
Description
Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data.
ContributorsVizzini, Anthony James, II (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
189345-Thumbnail Image.png
Description
The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and

The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and geophysical flows (sediment-laden rivers discharging nutrients into the oceans), etc.This thesis looks at systematically understanding the fundamental interplay between (1) fluid turbulence, (2) inertial particles, and (3) scalar transport. This work considers a temporal jet of Reynolds number of 5000 filled with the point-particles and the influence of Stokes number (St). Three Stokes numbers, St = 1, 7.5, and 20, were considered for the current work. The simulations were solved using the NGA solver, which solves the Navier-Stokes, advection-diffusion, and particle transport equations. The statistical analysis of the mean and turbulence quantities, along with the Reynolds stresses, are estimated for the fluid and particle phases throughout the domain. The observations do not show a significant influence of St in the mean flow evolution of fluid, scalar, and particle phases. The scalar mixture fraction variance and the turbulent kinetic energy (TKE) increase slightly for the St = 1 case, compared to the particle-free and higher St cases, indicating that an optimal St exists for which the scalar variation increases. The current preliminary study establishes that the scalar variance is influenced by particles under the optimal particle St. Directions for future studies based on the current observations are presented.
ContributorsPaturu, Venkata Sai Sushant (Author) / Pathikonda, Gokul (Thesis advisor) / Kasbaoui, Mohamed Houssem (Committee member) / Kim, Jeonglae (Committee member) / Prabhakaran, Prasanth (Committee member) / Arizona State University (Publisher)
Created2023
157724-Thumbnail Image.png
Description
Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect

Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect of temperature on the critical sooting equivalence ratio of propane/air mixture at atmospheric pressure with temperatures ranging from 750-1250°C was investigated using a micro-flow reactor with a controlled temperature profile of diameter 2.3mm, equivalence ratios of 1-13 and inlet flow rates of 10 and 100sccm. The effect of inert gas dilution was studied by adding 90sccm of nitrogen to 10sccm of propane/air to make a total flow rate of 100sccm. The gas species were collected at the end of the reactor using a gas chromatograph for further analysis. Soot was indicated by visually examining the reactor before and after combustion for traces of soot particles on the inside of the reactor. At 1000-1250°C carbon deposition/soot formation was observed inside the reactor at critical sooting equivalence ratios. At 750-950°C, no soot formation was observed despite operating at much higher equivalence ratio, i.e., up to 100. Adding nitrogen resulted in an increase in the critical sooting equivalence ratio.

The wall temperature profiles were obtained with the help of a K-type thermocouple, to get an idea of the difference between the wall temperature provided with the resistive heater and the wall temperature with combustion inside the reactor. The temperature profiles were very similar in the case of 10sccm but markedly different in the other two cases for all the temperatures.

These results indicate a trend that is not well-known or understood for sooting flames, i.e., decreasing temperature decreases soot formation. The reactor capability to examine the effect of temperature on the critical sooting equivalence ratio at different flow rates was successfully demonstrated.
ContributorsKhalid, Abdul Hannan Hannan (Author) / Milcarek, Ryan (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
161412-Thumbnail Image.png
Description
The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of

The objective of this study is to estimate the variation of flight performance of a variable sweep wing geometry on the reverse engineered Boeing 2707-100 SST, when compared against the traditional delta wing approach used on supersonic airliner. The reason for this lies beneath the fact that supersonic orientations of wings doesn’t seem to work well for subsonic conditions, and subsonic wings are inefficient for supersonic flight. This would likely mean that flying long haul subsonic with supersonic wing geometry is inefficient compared to regular aircraft, but more importantly requires high takeoff/landing speeds and even long runways to bring the aircraft to hold. One might be able to get around this problem - partially - by adding thrust either by using afterburners, or by using variable geometry wings. To assess the flight performance, the research work done in this report focuses on implementing the latter solution to the abovementioned problem by using the aerodynamic performance parameters such as Coefficient of Lift, Coefficient of Drag along with its components specific to every test Mach number and altitude, along with the propulsion performance parameters such as thrust and thrust specific fuel consumption at different iterations of power settings of engine, flight Mach number and altitude in a propulsion database file to estimate flight performance using flight missions and energy-maneuverability theory approach. The flight performance was studied at several sweep angles of the aircraft to estimate the best possible sweep orientation based on the requirement of mission and an optimal flight mission was developed for an aircraft with swing wing capabilities.
ContributorsChaudhari, Bhargav Naginbhai (Author) / Takahashi, Timothy T (Thesis advisor) / Dahm, Werner J (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2021
161464-Thumbnail Image.png
Description
The Transonic Area Rule, developed by Richard T. Whitcomb in the early 1950s, revolutionized high-speed flight because its insight allowed engineers to reduce and/or delay the transonic drag rise. To this day, it is the rationale behind “coke-bottle” sculpturing (indenting the aircraft fuselage at the wing-fuselage junction) to alter the

The Transonic Area Rule, developed by Richard T. Whitcomb in the early 1950s, revolutionized high-speed flight because its insight allowed engineers to reduce and/or delay the transonic drag rise. To this day, it is the rationale behind “coke-bottle” sculpturing (indenting the aircraft fuselage at the wing-fuselage junction) to alter the cross-sectional area development of the body. According to Whitcomb, this indentation is meant to create a smoother transition of cross-sectional area development of the body and consequently would reduce the number of shocks on the body, their intensity, and their shock pattern complexity. Along with this, modeling of a geometry’s transonic drag rise could be simplified by creating a comparable body of revolution with the same cross-sectional area development as the original geometry. Thus, the Transonic Area Rule has been advertised as an aerodynamic multitool. This new work probes the underlying mechanics of the Transonic Area Rule and determines just how accurate it is in producing its advertised results. To accomplish this, several different wave-drag approximation methods were used to replicate and compare the results presented in Whitcomb’s famous 1952 report16. These methods include EDET (Empirical Drag Estimation Technique)4, D2500 (Harris Wave Drag program)6, and CFD (Computational Fluid Dynamics) analysis through SU25. Overall drag increment data was collected for comparison with Whitcomb’s data. More in-depth analysis was then done on the flow conditions around the geometries using CFD solution plots. After analysis of the collected data was performed, it was discovered that this data argued against Whitcomb’s comparable body of revolution claim as no cases were demonstrated where the comparable body and original body yielded similar drag rise characteristics. Along with this, shock structures and patterns were not simplified in two of the three cases observed and were instead complicated even further. The only exception to this observation was the swept wing, cylindrical body in which all shocks were virtually eliminated at all observed Mach numbers. For the reduced transonic drag rise claim, the data argued in favor of this as the drag rise was indeed reduced for the three observed geometries, but only for a limited Mach number range.
ContributorsArmenta, Francisco Xavier (Author) / Takahashi, Timothy T (Thesis advisor) / Kim, Jeonglae (Committee member) / Rodi, Patrick (Committee member) / Arizona State University (Publisher)
Created2021
190825-Thumbnail Image.png
Description
Formula 1 car front wings have evolved significantly over the last fifty years. Looking back at the past decade shows significant changes made due to rules and regulations by the Federation Internationale de l'Automobile and an increased understanding of aerodynamic concepts. There seems to be a trend where aerodynamic design

Formula 1 car front wings have evolved significantly over the last fifty years. Looking back at the past decade shows significant changes made due to rules and regulations by the Federation Internationale de l'Automobile and an increased understanding of aerodynamic concepts. There seems to be a trend where aerodynamic design concepts, previously seen in aviation, are being applied to Formula 1 front wings; this helps race teams increase downforce and reduce drag. This thesis analyzes these changes made over the past years and relates the material back to material that was learned by the aviation industry and attempts to synthesize conceptual Formula 1 front Wing designs using VORLAX, a vortex lattice panel method, used in the aviation industry. This insight would be beneficial for Formula 1 teams as there are budget and time restrictions applied to Computational Fluid Dynamic and wind tunnel testing, but panel methods are run in a matter of seconds as opposed to hours or days. So, if verified, preliminary designs can be rapidly tested to optimize the workflow and reduce the time required for Computational Fluid Dynamic and wind tunnel testing.
ContributorsRatnayake, Sajana Sathsara (Author) / Takahashi, Timothy T (Thesis advisor) / Perez, Ruben E (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2023