Matching Items (105)
Filtering by

Clear all filters

157825-Thumbnail Image.png
Description
Standard procedures to estimate en-route aircraft performance rely upon the “standard atmosphere”. Real-world conditions are then represented as deviations from the standard atmosphere. Both flight manuals and aircraft designers make heavy use of the “deviation method” to account for geographical and temperature differences in atmospheric conditions. This method is often

Standard procedures to estimate en-route aircraft performance rely upon the “standard atmosphere”. Real-world conditions are then represented as deviations from the standard atmosphere. Both flight manuals and aircraft designers make heavy use of the “deviation method” to account for geographical and temperature differences in atmospheric conditions. This method is often done statically, choosing a single deviation based on temperature and a single wind speed for the duration of an entire mission.

Real-world atmospheric conditions have an incredible amount of variation throughout any given flight route, however. Changes in geographic location can present many changes within the atmosphere; they include differences in air temperature, humidity, wind speeds, wind directions, air densities, and more. Historically, these changes have not been accounted for in standard mission performance models. However, they present major possible impacts on real missions.

This thesis addresses this issue by developing a lateral and vertical mission simulation method that uses real-world and up-to-date atmospheric conditions to determine the effect of changing atmospheric conditions on en-route performance and economy. The custom toolset was used in combination with a series of trades over a series of five days and a representation of each season to show the variation that occurs on a single route over the course of daily and seasonal periods.

Both qualitative and quantitative effects from this perspective were recorded for the Airbus A320 and a student designed regional jet, the Aeris, to determine the effect of atmospheric variation on standard commercial transport and hypothetical high-altitude capable commercial transport. The variance presented by changing atmospheric conditions is massive and has large implications on future aircraft operations and design.

Due to large geographical and temporal variation in the wind speeds and directions, it is recommended that aircraft operators use daily measurements of atmospheric conditions to determine optimal flight paths and altitudes. Further investigation is recommended in terms of the effect of changing atmosphere for design, however from initial investigations it appears that a statistical method works well for incorporating the large variance added by real-world conditions.
ContributorsThomaas, Philip (Author) / Takahashi, Timothy (Thesis advisor) / Niemczyk, Mary (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019
157724-Thumbnail Image.png
Description
Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect

Micro/meso combustion has several advantages over regular combustion in terms of scale, efficiency, enhanced heat and mass transfer, quick startup and shutdown, fuel utilization and carbon footprint. This study aims to analyze the effect of temperature on critical sooting equivalence ratio and precursor formation in a micro-flow reactor. The effect of temperature on the critical sooting equivalence ratio of propane/air mixture at atmospheric pressure with temperatures ranging from 750-1250°C was investigated using a micro-flow reactor with a controlled temperature profile of diameter 2.3mm, equivalence ratios of 1-13 and inlet flow rates of 10 and 100sccm. The effect of inert gas dilution was studied by adding 90sccm of nitrogen to 10sccm of propane/air to make a total flow rate of 100sccm. The gas species were collected at the end of the reactor using a gas chromatograph for further analysis. Soot was indicated by visually examining the reactor before and after combustion for traces of soot particles on the inside of the reactor. At 1000-1250°C carbon deposition/soot formation was observed inside the reactor at critical sooting equivalence ratios. At 750-950°C, no soot formation was observed despite operating at much higher equivalence ratio, i.e., up to 100. Adding nitrogen resulted in an increase in the critical sooting equivalence ratio.

The wall temperature profiles were obtained with the help of a K-type thermocouple, to get an idea of the difference between the wall temperature provided with the resistive heater and the wall temperature with combustion inside the reactor. The temperature profiles were very similar in the case of 10sccm but markedly different in the other two cases for all the temperatures.

These results indicate a trend that is not well-known or understood for sooting flames, i.e., decreasing temperature decreases soot formation. The reactor capability to examine the effect of temperature on the critical sooting equivalence ratio at different flow rates was successfully demonstrated.
ContributorsKhalid, Abdul Hannan Hannan (Author) / Milcarek, Ryan (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
157865-Thumbnail Image.png
Description
An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance are affected by the aerodynamic rotor forces, which in turn

An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance are affected by the aerodynamic rotor forces, which in turn are affected by the orientation and motion of the craft. The aerodynamic performance of such rotors can vary significantly depending on orientation, influencing the efficiency of the system. This thesis analyzes the aerodynamic performance of an autorotating rotor through a range of angles of attack covering those experienced by a typical autogyro through that of a horizontal-axis wind turbine. To study the behavior of such rotors, an analytical model using the blade element theory coupled with momentum theory was developed. The model uses a rigid-rotor assumption and is nominally limited to cases of small induced inflow angle and constant induced velocity. The model allows for linear twist. In order to validate the model, several rotors -- off-the-shelf model-aircraft propellers -- were tested in a low speed wind tunnel. Custom built mounts allowed rotor angles of attack from 0 to 90 degrees in the test section, providing data for lift, drag, thrust, horizontal force, and angular velocity. Experimental results showed increasing thrust and angular velocity with rising pitch angles, whereas the in-plane horizontal force peaked and dropped after a certain value. The analytical results revealed a disagreement with the experimental trends, especially at high pitch angles. The discrepancy was attributed to the rotor operating in turbulent wake and vortex ring states at high pitch angles, where momentum theory has proven to be invalid. Also, aerodynamic design constants, which are not precisely known for the test propellers, have an underlying effect on the analytical model. The developments of the thesis suggest that a different analytical model may be needed for high rotor angles of attack. However, adding a term for resisting torque to the model gives analytical results that are similar to the experimental values.
ContributorsHota, Piyush (Author) / Wells, Valana L. (Thesis advisor) / Calhoun, Ronald (Committee member) / Garrett, Frederick (Committee member) / Arizona State University (Publisher)
Created2019
157742-Thumbnail Image.png
Description
Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting

Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting area for research. The analysis of propagation of fatigue crack growth under environmental interaction and the life prediction is significant to reduce the maintenance costs and assure structural integrity. Without proper investigation of the crack extension under corrosion fatigue, the scenario can lead to catastrophic disasters due to premature failure of a structure. An attempt has been made in this study to predict the corrosion fatigue crack growth with reasonable accuracy. Models that have been developed so far predict the crack propagation for constant amplitude loading (CAL). However, most of the industrial applications encounter random loading. Hence there is a need to develop models based on time scale. An existing time scale model that can predict the fatigue crack growth for constant and variable amplitude loading (VAL) in the Paris region is initially modified to extend the prediction to near threshold and unstable crack growth region. Extensive data collection was carried out to calibrate the model for corrosion fatigue crack growth (CFCG) based on the experimental data. The time scale model is improved to incorporate the effect of corrosive environments such as NaCl and dry hydrogen in the fatigue crack growth (FCG) by investigation of the trend in change of the crack growth. The time scale model gives the advantage of coupling the time phenomenon stress corrosion cracking which is suggested as a future work in this paper.
ContributorsKurian, Bianca (Author) / Liu, Yongming (Thesis advisor) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158753-Thumbnail Image.png
Description
The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into

The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into detailed
volume grid computational fluid dynamics (CFD), in which the physics of supersonic
flow are modeled directly but at a high computational cost and thus an incredibly long
design process. Classical aerodynamics experts have published work describing a process
which can be followed which might bypass the need for detailed CFD altogether.

This work outlines how successfully a simple vortex lattice panel method CFDcode can be used in the design process for a Mach 1.3 cruise speed airline wing concept.
Specifically, the success of the wing design is measured in its ability to operate subcritically (i.e. free of shock waves) even in a free stream flow which is faster than the
speed of sound. By using a modified version of Simple Sweep Theory, design goals are
described almost entirely based on defined critical pressure coefficients and critical Mach
numbers. The marks of a well-designed wing are discussed in depth and how these traits
will naturally lend themselves to a well-suited supersonic wing.

Unfortunately, inconsistencies with the published work are revealed by detailedCFD validation runs to be extensive and large in magnitude. These inconsistencies likely
have roots in several concepts related to supersonic compressible flow which are
explored in detail. The conclusion is made that the theory referenced in this work by the
classical aerodynamicists is incorrect and/or incomplete. The true explanation for the
perplexing shock wave phenomenon observed certainly lies in some convolution of the
factors discussed in this thesis. Much work can still be performed in the way of creating
an empirical model for shock wave formation across a highly swept wing with blunt
leading-edge airfoils.
ContributorsKurus, Noah John (Author) / Takahashi, Timothy (Thesis advisor) / Benson, David (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020
158874-Thumbnail Image.png
Description
Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict

Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict a human error event, Loss of Separation (LOS). Six retired air traffic controllers were recruited and tested in three conditions of varying workload in an Terminal Radar Approach Control Facility (TRACON) arrival radar simulation. Communication transcripts from simulated trials were transcribed and coding schemes for Closed Loop Communication Deviations (CLCD) were applied. Results of the study demonstrated a positive correlation between CLCD and LOS, indicating that CLCD could be a variable used to predict LOS. However, more research is required to determine if CLCD can be used to predict LOS independent of other predictor variables, and if CLCD can be used in a model that considers many different predictor variables to predict LOS.
ContributorsLieber, Christopher Shane (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020
Description
Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are

Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are induced due to aerodynamic effects. Studies indicate that blade flapping, induced drag, and propeller drag influence forward flight performance while other effects like vortex ring state, ground effect affect vertical flight performance. In this thesis, an offboard data-driven approach is used to derive models for parasitic (bare-airframe) drag and propeller drag. Moreover, thrust and torque coefficients are identified from static bench tests. Among the two, parasitic drag is compensated for in the position controller module in the PX4 firmware. 2-D circular, straight line, and minimum snap rectangular trajectories with corridor constraints are tested exploiting differential flatness property wherein altitude and yaw angle are constant. Flight tests are conducted at ASU Drone Studio and results of tracking performance with default controller and with drag compensated position controller are presented. Root mean squared tracking error in individual axes is used as a metric to evaluate the model performance. Results indicate that, for circular trajectory, the root mean squared error in the x-axis has reduced by 44.54% and in the y-axis by 39.47%. Compensation in turn degrades the tracking in both axis by a maximum under 12% when compared to the default controller for rectangular trajectory case. The x-axis tracking error for the straight-line case has improved by 44.96% with almost no observable change in the y-axis.
ContributorsNolastname, Kashyap Sathyamurthy (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2020
158587-Thumbnail Image.png
Description
This thesis aims to design of wings for a laminate biped robot for providing locomotion stabilization during jump gliding. The wings are designed to collapse down during the jumping phase to maximize jump height and deployed back for gliding phase using anisotropic buckling in tape spring hinges. The project aims

This thesis aims to design of wings for a laminate biped robot for providing locomotion stabilization during jump gliding. The wings are designed to collapse down during the jumping phase to maximize jump height and deployed back for gliding phase using anisotropic buckling in tape spring hinges. The project aims to develop a reliable dynamics model which can be utilized for design and evaluation of optimized systems for jump-gliding. The aerodynamic simulations are run on a vortex-lattice code which provides numeric simulations of the defined geometric bodies. The aerodynamic simulations assist in improving the design parameters such as planform, camber and twist to achieve the best possible Coefficient of Lift for maximizing glide distance. The aerodynamic simulation output is then plugged into a dynamics model built in Python, which is validated and correlated with experimental testing of a key wing designs. The experimental results are then utilized to improve the dynamics model and obtain better designs for improved performance. The simulation model informs the aerodynamic design of wings for sustaining glide for the biped platform and maximizing glide length to increase range.
ContributorsGadekar, Vipul (Author) / Takahashi, Timothy (Thesis advisor) / Aukes, Daniel (Thesis advisor) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
158378-Thumbnail Image.png
Description
This thesis explores the potential application of the phase change material tungsten trioxide (WO3) in optical force modulation for spacecraft and satellites. It starts with a literature review of past space optical force applications as well as potential phase change materials for optical force modulation. This is followed by the

This thesis explores the potential application of the phase change material tungsten trioxide (WO3) in optical force modulation for spacecraft and satellites. It starts with a literature review of past space optical force applications as well as potential phase change materials for optical force modulation. This is followed by the theoretical model and discussions of the optical properties of a variety of materials used in the structures explored thereafter. Four planar structures were analyzed in detail. Two of the structures were opaque and the other two were semi-transparent.

The first of the opaque structures was a tungsten trioxide film on aluminum substrate (WO3/Al). It was found to have a 26% relative change in radiation pressure with WO3 thickness of 200 nm. The second opaque structure was a tungsten trioxide film on silicon spacer on aluminum substrate (WO3/Si/Al). This structure was found to have a 25% relative change in radiation pressure with 180 nm WO3 and 20 nm Si.

The semitransparent structures were tungsten trioxide film on undoped silicone substrate (WO3/Si), and a tungsten trioxide film on a silicone spacer on tungsten trioxide (WO3/Si/WO3). The WO3/Si structure was found to have an 8% relative change in radiation pressure with 200 nm WO3 and 50 nm Si. The WO3/Si/WO3 structure had a relative change in radiation pressure of 20% with 85 nm WO3 and 90 nm Si.

These structures show promise for attitude control in future solar sailing space missions. The IKAROS mission proved the functionality of using phase change material in order to steer a space craft. This was accomplished with a 7.8% relative change in radiation pressure. However, this only occurred at a pressure change of 0.11 µN/m2 over a range of 0.4 to 1.0 µm which is approximately 77.1% of the solar spectrum energy. The proposed structure (WO3/Al) with a 26% relative change in radiation pressure with a pressure change of 1.4 µN/m2 over a range 0.4 to 1.6 µm which is approximately 80% of the solar spectrum energy. The magnitude of radiation pressure variation in this study exceeds that used on the IKAROS, showing applicability for future mission.
ContributorsVlastos, Joseph Niko (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Calhoun, Ron (Committee member) / Arizona State University (Publisher)
Created2020
Description
Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low

Vertical take-off and landing (VTOL) systems have become a crucial component of aeronautical and commercial applications alike. Quadcopter systems are rather convenient to analyze and design controllers for, owing to symmetry in body dynamics. In this work, a quadcopter model at hover equilibrium is derived, using both high and low level control. The low level control system is designed to track reference Euler angles (roll, pitch and yaw) as shown in previous work [1],[2]. The high level control is designed to track reference X, Y, and Z axis states [3]. The objective of this paper is to model, design and simulate platooning (separation) control for a fleet of 6 quadcopter units, each comprising of high and low level control systems, using a leader-follower approach. The primary motivation of this research is to examine the ”accordion effect”, a phenomenon observed in leader-follower systems due to which positioning or spacing errors arise in follower vehicles due to sudden changes in lead vehicle velocity. It is proposed that the accordion effect occurs when lead vehicle information is not directly communicated with the rest of the system [4][5] . In this paper, the effect of leader acceleration feedback is observed for the quadcopter platoon. This is performed by first designing a classical platoon controller for a nominal case, where communication within the system is purely ad-hoc (i.e from one quadcopter to it’s immediate successor in the fleet). Steady state separation/positioning errors for each member of the fleet are observed and documented during simulation. Following this analysis, lead vehicle acceleration is provided to the controller (as a feed forward term), to observe the extent of it’s effect on steady state separation, specifically along tight maneuvers. Thus the key contribution of this work is a controller that stabilizes a platoon of quadcopters in the presence of the accordion effect, when employing a leader-follower approach. The modeling shown in this paper builds on previous research to design a low costquadcopter platform, the Mark 3 copter [1]. Prior to each simulation, model nonlinearities and hardware constants are measured or derived from the Mark 3 model, in an effort to observe the working of the system in the presence of realistic hardware constraints. The system is designed in compliance with Robot Operating System (ROS) and the Micro Air Vehicle Link (MAVLINK) communication protocol.
ContributorsSrinivasan, Anshuman (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021