Matching Items (10)
Filtering by

Clear all filters

151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
150215-Thumbnail Image.png
Description
Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and

Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This disserta- tion describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier- Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational architectures. In the first system, the code's ability to handle surface tension and large tem- perature gradients is established. In the second system, the code's ability to sim- ulate simple interface geometries with strong shear is demonstrated. In the third system, the ability to handle extremely complex geometries and topology changes with strong shear is shown.
ContributorsBrady, Peter, Ph.D (Author) / Herrmann, Marcus (Thesis advisor) / Lopez, Juan (Thesis advisor) / Adrian, Ronald (Committee member) / Calhoun, Ronald (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150726-Thumbnail Image.png
Description
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical

The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K - 1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.
ContributorsBae, Kang-Sik (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Phelan, Patrick (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2012
154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
ContributorsNair, Priya (Author) / Frakes, David (Thesis advisor) / Vernon, Brent (Committee member) / Chong, Brian (Committee member) / Pizziconi, Vincent (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
154540-Thumbnail Image.png
Description
A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and

A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points.

The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver.

Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data.

Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts.

The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6 and 25 degrees with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.
ContributorsMerrill, Brandon Earl (Author) / Peet, Yulia (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
155243-Thumbnail Image.png
Description
A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical

Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial

species and by applying the dynamical systems theory the effect of flow topology on the

variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient

in the turbulent flow, and analyzing the evolution of reaction associated with the observed

high and low stretching regions. The Gaussian nutrient patch is released at different locations

and the corresponding nutrient uptake is obtained. The variable stretching characteristics of

the flow is depicted by Lagrangian Coherent Structures and the roles they play in affecting the

uptake are analyzed. The Lagrangian Coherent Structures are quantified by the Finite Time

Lyapunov Exponents which is a measure of the average stretching experienced by the flow in

finite time. It is found that in high stretching regions, the motile bacteria are attracted to the

nutrient patch very quickly, but also dispersed quickly; whereas in low stretching regions the

bacteria respond slower towards the nutrient patch. However the total uptake is intricately

determined by stretching history. These reaction characteristics are reflected in the several

realizations of simulations. This helps in understanding turbulence intensity and how it affects

the uptake of the nutrient.
ContributorsGeorge, Jino (Author) / Tang, Wenbo (Thesis advisor) / Peet, Yulia (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2017
137680-Thumbnail Image.png
Description
Intracranial aneurysms, which form in the blood vessels of the brain, are particularly dangerous because of the importance and fragility of the human brain. When an intracranial aneurysm gets large it poses a significant risk of bursting and causing subarachnoid hemorrhaging (SAH), a possibly fatal condition. One possible treatment involves

Intracranial aneurysms, which form in the blood vessels of the brain, are particularly dangerous because of the importance and fragility of the human brain. When an intracranial aneurysm gets large it poses a significant risk of bursting and causing subarachnoid hemorrhaging (SAH), a possibly fatal condition. One possible treatment involves placing a stent in the vessel to act as a flow diverter. In this study we look at the hemodynamics of two geometries of idealized basilar tip aneurysms, at 2,3, and 4 ml/s pulsatile flow, at three different points in the cardiac cycle. The smaller model had neck and dome diameters of 2.67 mm and 4 mm respectively, while the larger aneurysm had neck and dome diameters of 3 mm and 6 mm respectively. Both diameters and the dome to neck ratio increased in the second model, representing growth over time. Flow was analyzed using stereoscopic particle image velocimetry (PIV) for both geometries in untreated models, as well as after treatment with a high porosity Enterprise stent (Codman and Shurtleff Inc.). Flow in the models was characterized by root mean square velocity in the aneurysm and neck plane, cross neck flow, max aneurysm vorticity, and total aneurysm kinetic energy. It was found that in the smaller aneurysm model (model 1), Enterprise stent treatment reduced all flow parameters substantially. The smallest reduction was in max vorticity, at 42.48%, and the largest in total kinetic energy, at 75.69%. In the larger model (model 2) there was a 52.18% reduction in cross neck flow, but a 167.28% increase in aneurysm vorticity. The other three parameters experienced little change. These results, along with observed velocity vector fields, indicate a noticeable diversion of flow away from the aneurysm in the stent treated model 1. Treatment in model 2 had a small flow diversion effect, but also altered flow in unpredictable ways, in some cases having a detrimental effect on aneurysm hemodynamics. The results of this study indicate that Enterprise stent treatment is only effective in small, relatively undeveloped aneurysm geometries, and waiting until an aneurysm has grown too large can eliminate this treatment option altogether.
ContributorsLindsay, James Bryan (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Committee member) / Nair, Priya (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2013-05
154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
ContributorsChaudhury, Rafeed Ahmed (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald J (Thesis advisor) / Vernon, Brent (Committee member) / Pizziconi, Vincent (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2015
157865-Thumbnail Image.png
Description
An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance are affected by the aerodynamic rotor forces, which in turn

An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite, provides one platform for accessing the energy in high altitude winds. The craft is maintained at altitude by its rotors operating in autorotation, and its equilibrium attitude and dynamic performance are affected by the aerodynamic rotor forces, which in turn are affected by the orientation and motion of the craft. The aerodynamic performance of such rotors can vary significantly depending on orientation, influencing the efficiency of the system. This thesis analyzes the aerodynamic performance of an autorotating rotor through a range of angles of attack covering those experienced by a typical autogyro through that of a horizontal-axis wind turbine. To study the behavior of such rotors, an analytical model using the blade element theory coupled with momentum theory was developed. The model uses a rigid-rotor assumption and is nominally limited to cases of small induced inflow angle and constant induced velocity. The model allows for linear twist. In order to validate the model, several rotors -- off-the-shelf model-aircraft propellers -- were tested in a low speed wind tunnel. Custom built mounts allowed rotor angles of attack from 0 to 90 degrees in the test section, providing data for lift, drag, thrust, horizontal force, and angular velocity. Experimental results showed increasing thrust and angular velocity with rising pitch angles, whereas the in-plane horizontal force peaked and dropped after a certain value. The analytical results revealed a disagreement with the experimental trends, especially at high pitch angles. The discrepancy was attributed to the rotor operating in turbulent wake and vortex ring states at high pitch angles, where momentum theory has proven to be invalid. Also, aerodynamic design constants, which are not precisely known for the test propellers, have an underlying effect on the analytical model. The developments of the thesis suggest that a different analytical model may be needed for high rotor angles of attack. However, adding a term for resisting torque to the model gives analytical results that are similar to the experimental values.
ContributorsHota, Piyush (Author) / Wells, Valana L. (Thesis advisor) / Calhoun, Ronald (Committee member) / Garrett, Frederick (Committee member) / Arizona State University (Publisher)
Created2019
158296-Thumbnail Image.png
Description
Drainage flow of a viscous compressible gas from a semi-sealed narrow conduit is a pore-scale model for studying the fundamental flow physics of fluid recovery from a porous reservoir without using fluid injection. Thermal effect has been routinely neglected for these flows in the traditional petroleum engineering literature. Since the

Drainage flow of a viscous compressible gas from a semi-sealed narrow conduit is a pore-scale model for studying the fundamental flow physics of fluid recovery from a porous reservoir without using fluid injection. Thermal effect has been routinely neglected for these flows in the traditional petroleum engineering literature. Since the motion is entirely driven by volumetric expansion, temperature change always accompanies the density change. This thesis examines such thermal effects on the drainage flow.

Thermal drainage flow is first studied by simultaneously solving the linearized continuity, momentum and energy equations for adiabatic walls. It is shown that even in the absence of an imposed temperature drop, gas expansion induces a transient temperature decrease inside the channel, which slows down the drainage process compared to the isothermal model and Lighthill’s model. For a given density drop, gas drains out faster as the initial-to-final temperature ratio increases; and the transient density can undershoot the final equilibrium value. A parametric study is then carried out to explore the influence of various thermal boundary conditions on drainage flow. It is found that as the wall transitions from adiabatic to isothermal condition, the excess density changes from a plane wave solution to a non-plane wave solution and the drainage rate increases. It is shown that when the exit is also cooled and the wall is non-adiabatic, the total recovered fluid mass exceeds the amount based on the isothermal theory which is determined by the initial and final density difference alone. Finally, a full numerical simulation is conducted to mimic the channel-reservoir system using the finite volume method. The Ghost-Cell Navier-Stokes Characteristic Boundary Condition technique is applied at the far end of the truncated reservoir, which is an open boundary. The results confirm the conclusions of the linear theory.
ContributorsHuang, Wei (Author) / Chen, Kangping (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Baer, Steven (Committee member) / Arizona State University (Publisher)
Created2020