Matching Items (15)
Filtering by

Clear all filters

150982-Thumbnail Image.png
Description
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
ContributorsDickeson, Jeffrey James (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Wells, Valana (Committee member) / Kawski, Mattias (Committee member) / Arizona State University (Publisher)
Created2012
156318-Thumbnail Image.png
Description
VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system.

In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in
its hover and horizontal flying modes. The model of the plane is obtained using first principles modeling and controllers are designed to stabilize the yaw, pitch and roll rotational motions.

The plane is modeled for its yaw, pitch and roll rotational motions. Subsequently, the rotational dynamics of the system are linearized about the hover flying mode, hover to horizontal flying mode, horizontal flying mode, horizontal to hover flying mode for ease of implementation of linear control design techniques. The controllers are designed based on an H∞ loop shaping procedure and the results are verified on the actual nonlinear model for the stability of the closed loop system about hover flying, hover to horizontal transition flying, horizontal flying, horizontal to hover transition flying. An experiment is conducted to study the dynamics of the motor by recording the PWM input to the electronic speed controller as input and the rotational speed of the motor as output. A theoretical study is also done to study the thrust generated by the propellers for lift, slipstream velocity analysis, torques acting on the system for various thrust profiles.
ContributorsRAGHURAMAN, VIGNESH (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2018
156988-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.

One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:

(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,

(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),

(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors

(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,

(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),

(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),

(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),

(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.

The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.

The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
ContributorsLu, Shi (Author) / Rodriguez, Armando A. (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2018
131515-Thumbnail Image.png
Description
Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space

Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space elevator, spacecraft released from an apex anchor could achieve interplanetary transfers with minimal Delta V fuel and time of flight requirements. By using Lambert’s Problem and Free Release propagation to determine the minimal fuel transfer from a terrestrial space elevator to Mars under a variety of initial conditions and time-of-flight constraints, this paper demonstrates that the use of a space elevator release can address both needs by dramatically reducing the time-of-flight and the fuel budget.
ContributorsTorla, James (Author) / Peet, Matthew (Thesis director) / Swan, Peter (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136382-Thumbnail Image.png
Description
The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace

The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace technology. This technique employs PZT transducers to actuate and collect guided Lamb wave signals. Matching pursuit decomposition (MPD) is used to decompose the signal into a cross-term free time-frequency relation. This decoupling of time and frequency facilitates the calculation of a signal's time-of-flight along a path between an actuator and sensor. Using the time-of-flights, comparisons can be made between similar composite structures to find damaged regions by examining differences in the time of flight for each path between PZTs, with respect to direction. Relatively large differences in time-of-flight indicate the presence of new or more significant damage, which can be verified using a physics-based approach. Wave propagation modeling is used to implement a physics based approach to this method, which is coupled with adaptive algorithms that take into account currently existing damage to a composite structure. Previous SHM techniques for composite structures rely on the assumption that the composite is initially free of all damage on both a macro and micro-scale, which is never the case due to the inherent introduction of material defects in its fabrication. This method provides a novel technique for investigating the presence and nature of damage in composite structures. Further investigation into the technique can be done by testing structures with different sizes of damage and investigating the effects of different operating temperatures on this SHM system.
ContributorsBarnes, Zachary Stephen (Author) / Chattopadhyay, Aditi (Thesis director) / Neerukatti, Rajesh Kumar (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
137153-Thumbnail Image.png
Description
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.
ContributorsKuenzi, Linda Christine (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Kulesa, Craig (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134604-Thumbnail Image.png
Description
In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although the most difficult material to work with, would likely provide the best results as compared to an HTPB baseline. This is because after conducting a heat conservation analysis similar to that employed by NASA's chemical equilibrium with applications code (CEA), ABS was shown to operate at similarly high levels of specific impulse at approximately the same oxidizer-to-fuel ratio, meaning the current Daedalus test setup for HTPB would be applicable to ABS. In addition, PLA was found to require a far lower oxidizer-to-fuel ratio to achieve peak specific impulse than any of the other fuels analyzed leading to the conclusion that in a flight-ready engine it would likely require less oxidizer and pressurization mass, and therefore, less overall system mass, to achieve thrust levels similar to ABS and HTPB. By improving the thrust-to-weight ratio in this way a more efficient engine could be developed. Following these results, future works will include the hot-fire testing of the four fuel options to verify the analysis method used. Additionally, the ground work has been set for future analysis and development of complex fuel port geometries which have been shown to further improve flight characteristics.
ContributorsWinsryg, Benjamin Rolf (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133525-Thumbnail Image.png
Description
Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming method of producing the magnitude of delta-v vectors required to abort from various points along a Near Rectilinear Halo Orbit. Although the utility of the study is limited, the accuracy of the delta-v predictions made by a Gaussian regression model is fairly accurate after a relatively swift computation time, paving the way for more concentrated studies of this nature in the future.
ContributorsSmallwood, Sarah Lynn (Author) / Peet, Matthew (Thesis director) / Liu, Huan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149577-Thumbnail Image.png
Description
This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and

This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.
ContributorsKhatri, Jaidev (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2011
135299-Thumbnail Image.png
Description
Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This

Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This pressure drop goes through several distinct stages before reaching steady state or semi-steady state production. This paper focuses on the analysis of a circular well with a closed outer boundary and details the derivation of a new approximation, intended for the transient stage, from an existing steady state solution. This new approximation is then compared to the numerical solution as well as an existing approximate solution. The new approximation is accurate with a maximum 10% margin of error well into the semi-steady state phase with that error decreasing significantly as the distance to the closed external boundary increases. More accurate over a longer period of time than the existing line source approximation, the relevance and applications of this new approximate solution deserve further exploration.
ContributorsKelso, Sean Andrew (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05