Matching Items (10)
Filtering by

Clear all filters

131515-Thumbnail Image.png
Description
Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space

Human habitation of other planets requires both cost-effective transportation and low time-of-flight for human passengers and critical supplies. The current methods for interplanetary orbital transfers, such as the Hohmann transfer, require either expensive, high fuel maneuvers or extended space travel. However, by utilizing the high velocities of a super-geosynchronous space elevator, spacecraft released from an apex anchor could achieve interplanetary transfers with minimal Delta V fuel and time of flight requirements. By using Lambert’s Problem and Free Release propagation to determine the minimal fuel transfer from a terrestrial space elevator to Mars under a variety of initial conditions and time-of-flight constraints, this paper demonstrates that the use of a space elevator release can address both needs by dramatically reducing the time-of-flight and the fuel budget.
ContributorsTorla, James (Author) / Peet, Matthew (Thesis director) / Swan, Peter (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136382-Thumbnail Image.png
Description
The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace

The goal of this research is to couple a physics-based model with adaptive algorithms to develop a more accurate and robust technique for structural health monitoring (SHM) in composite structures. The purpose of SHM is to localize and detect damage in structures, which has broad applications to improvements in aerospace technology. This technique employs PZT transducers to actuate and collect guided Lamb wave signals. Matching pursuit decomposition (MPD) is used to decompose the signal into a cross-term free time-frequency relation. This decoupling of time and frequency facilitates the calculation of a signal's time-of-flight along a path between an actuator and sensor. Using the time-of-flights, comparisons can be made between similar composite structures to find damaged regions by examining differences in the time of flight for each path between PZTs, with respect to direction. Relatively large differences in time-of-flight indicate the presence of new or more significant damage, which can be verified using a physics-based approach. Wave propagation modeling is used to implement a physics based approach to this method, which is coupled with adaptive algorithms that take into account currently existing damage to a composite structure. Previous SHM techniques for composite structures rely on the assumption that the composite is initially free of all damage on both a macro and micro-scale, which is never the case due to the inherent introduction of material defects in its fabrication. This method provides a novel technique for investigating the presence and nature of damage in composite structures. Further investigation into the technique can be done by testing structures with different sizes of damage and investigating the effects of different operating temperatures on this SHM system.
ContributorsBarnes, Zachary Stephen (Author) / Chattopadhyay, Aditi (Thesis director) / Neerukatti, Rajesh Kumar (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
137153-Thumbnail Image.png
Description
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.
ContributorsKuenzi, Linda Christine (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Kulesa, Craig (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134604-Thumbnail Image.png
Description
In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although the most difficult material to work with, would likely provide the best results as compared to an HTPB baseline. This is because after conducting a heat conservation analysis similar to that employed by NASA's chemical equilibrium with applications code (CEA), ABS was shown to operate at similarly high levels of specific impulse at approximately the same oxidizer-to-fuel ratio, meaning the current Daedalus test setup for HTPB would be applicable to ABS. In addition, PLA was found to require a far lower oxidizer-to-fuel ratio to achieve peak specific impulse than any of the other fuels analyzed leading to the conclusion that in a flight-ready engine it would likely require less oxidizer and pressurization mass, and therefore, less overall system mass, to achieve thrust levels similar to ABS and HTPB. By improving the thrust-to-weight ratio in this way a more efficient engine could be developed. Following these results, future works will include the hot-fire testing of the four fuel options to verify the analysis method used. Additionally, the ground work has been set for future analysis and development of complex fuel port geometries which have been shown to further improve flight characteristics.
ContributorsWinsryg, Benjamin Rolf (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133525-Thumbnail Image.png
Description
Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming

Prior research has confirmed that supervised learning is an effective alternative to computationally costly numerical analysis. Motivated by NASA's use of abort scenario matrices to aid in mission operations and planning, this paper applies supervised learning to trajectory optimization in an effort to assess the accuracy of a less time-consuming method of producing the magnitude of delta-v vectors required to abort from various points along a Near Rectilinear Halo Orbit. Although the utility of the study is limited, the accuracy of the delta-v predictions made by a Gaussian regression model is fairly accurate after a relatively swift computation time, paving the way for more concentrated studies of this nature in the future.
ContributorsSmallwood, Sarah Lynn (Author) / Peet, Matthew (Thesis director) / Liu, Huan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
157921-Thumbnail Image.png
Description
It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks

It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation.
ContributorsWASWA, PETER (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2019
132102-Thumbnail Image.png
Description
This paper describes the development of a software tool used to automate the preliminary design of aircraft wing structure. By taking wing planform and aircraft weight as inputs, the tool is able to predict loads that will be experienced by the wing. An iterative process is then used to select

This paper describes the development of a software tool used to automate the preliminary design of aircraft wing structure. By taking wing planform and aircraft weight as inputs, the tool is able to predict loads that will be experienced by the wing. An iterative process is then used to select optimal material thicknesses for each section of the design to minimize total structural weight. The load analysis checks for tensile failure as well as Euler buckling when considering if a given wing structure is valid. After running a variety of test cases with the tool it was found that wing structure of small-scale aircraft is predominantly buckling driven. This is problematic because commonly used weight estimation equations are based on large scale aircraft with strength driven wing designs. Thus, if these equations are applied to smaller aircraft, resulting weight estimates are often much lower than reality. The use of a physics-based approach to preliminary sizing could greatly improve the accuracy of weight predictions and accelerate the design process.
ContributorsKolesov, Nikolay (Author) / Takahashi, Timothy (Thesis director) / Patel, Jay (Committee member) / Kosaraju, Srinivas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132111-Thumbnail Image.png
Description
An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD)

An understanding of aerodynamics is crucial for automobile performance and efficiency. There are many types of “add-on” aerodynamic devices for cars including wings, splitters, and vortex generators. While these have been studied extensively, rear spoilers have not, and their effects are not as widely known. A Computational Fluid Dynamics (CFD) and wind tunnel study was performed to study the effects of spoilers on vehicle aerodynamics and performance. Vehicle aerodynamics is geometry dependent, meaning what applies to one car may or may not apply on another. So, the Scion FRS was chosen as the test vehicle because it is has the “classic” sports car configuration with a long hood, short rear, and 2+2 passenger cabin while also being widely sold with a plethora of aftermarket aerodynamic modifications available. Due to computing and licensing restrictions, only a 2D CFD simulation was performed in ANSYS Fluent 19.1. A surface model of the centerline of the car was created in SolidWorks and imported into ANSYS, where the domain was created. A mesh convergence study was run to determine the optimum mesh size, and Realizable k-epsilon was the chosen physics model. The wind tunnel lacked equipment to record quantifiable data, so the wind tunnel was utilized for flow visualization on a 1/24 scale car model to compare with the CFD.

0° spoilers reduced the wake area behind the car, decreasing pressure drag but also decreasing underbody flow, causing a reduction in drag and downforce. Angled spoilers increased the wake area behind the car, increasing pressure drag but also increasing underbody flow, causing an increase in drag and downforce. Longer spoilers increased these effects compared to shorter spoilers, and short spoilers at different angles did not create significantly different effects. 0° spoilers would be best suited for cases that prioritize fuel economy or straight-line acceleration and speed due to the drag reduction, while angled spoilers would be best suited for cars requiring downforce. The angle and length of spoiler would depend on the downforce needed, which is dependent on the track.
ContributorsNie, Alexander (Author) / Wells, Valana (Thesis director) / Huang, Huei-Ping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12