Matching Items (9)
Filtering by

Clear all filters

152964-Thumbnail Image.png
Description
Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) is a rare and highly aggressive ovarian cancer that affects children and young women at a mean age of 24 years. Most SCCOHT patients are diagnosed at an advanced stage and do not respond to chemotherapy. As a result, more than

Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) is a rare and highly aggressive ovarian cancer that affects children and young women at a mean age of 24 years. Most SCCOHT patients are diagnosed at an advanced stage and do not respond to chemotherapy. As a result, more than 75% of patients succumb to their disease within 1-2 years. To provide insights into the biological, diagnostic, and therapeutic vulnerabilities of this deadly cancer, a comprehensive characterization of 22 SCCOHT cases and 2 SCCOHT cell lines using microarray and next-generation sequencing technologies was performed. Following histological examination, tumor DNA and RNA were extracted and used for array comparative genomic hybridization and gene expression microarray analyses. In agreement with previous reports, SCCOHT presented consistently diploid profiles with few copy number aberrations. Gene expression analysis showed SCCOHT tumors have a unique gene expression profile unlike that of most common epithelial ovarian carcinomas. Dysregulated cell cycle control, DNA repair, DNA damage-response, nucleosome assembly, neurogenesis and nervous system development were all characteristic of SCCOHT tumors. Sequencing of DNA from SCCOHT patients and cell lines revealed germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 79% (19/24) of SCCOHT patients in addition to SMARCA4 protein loss in 84% (16/19) of SCCOHT tumors, but in only 0.4% (2/485) of other primary ovarian tumors. Ongoing studies are now focusing on identifying treatments for SCCOHT based on therapeutic vulnerabilities conferred by ubiquitous inactivating mutations in SMARCA4 in addition to gene and protein expression data. Our characterization of the molecular landscape of SCCOHT and the breakthrough identification of inactivating SMARCA4 mutations in almost all cases of SCCOHT offers the first significant insight into the molecular pathogenesis of this disease. The loss of SMARCA4 protein is a highly sensitive and specific marker of the disease, highlighting its potential role as a diagnostic marker, and offers the opportunity for genetic testing of family members at risk. Outstanding questions remain about the role of SMARCA4 loss in the biology, histogenesis, diagnosis, and treatment of SCCOHT.
ContributorsRamos, Pilar (Author) / Anderson, Karen (Thesis advisor) / Trent, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
171538-Thumbnail Image.png
Description
I studied the evolution and cell biology of Paramecium tetraurelia—a model ciliate with over 40,000 distinct protein-coding genes resulting from as many as three ancient whole-genome duplication events. I was interested in the functional diversification of these gene duplicates at the level of protein localization, but the commonly used tools

I studied the evolution and cell biology of Paramecium tetraurelia—a model ciliate with over 40,000 distinct protein-coding genes resulting from as many as three ancient whole-genome duplication events. I was interested in the functional diversification of these gene duplicates at the level of protein localization, but the commonly used tools to study this were tedious. I instead applied a protein-correlation profiling approach to this system by way of generating a dozen sub-cellular fractions with different protein constituents due to the density of their resident organelle and then assayed these fractions using quantitative mass spectrometry. Each protein’s unique abundance profile provided evidence for its subcellular localization, and I used both supervised and unsupervised classification algorithms to cluster proteins together based on the similarity of these profiles to several hundred “marker proteins” which I manually curated. After expanding the protein inventory for numerous organelles by as many as a thousand proteins, I determined many features not previously understood or appreciated such as mosaic biochemical pathways, evidence for differential sorting mechanisms, and the abnormal evolutionary patterns of the mitochondrial proteome of ciliates. I developed a simple bioinformatic tool to probe spatial proteomics datasets more easily for proteins of interest. I demonstrate its applicability using a handful of well-characterized proteins in the budding yeast Saccharomyces cerevisiae as well as interesting proteins in less well-studied model systems like P. tetraurelia and the apicomplexan Toxoplasma gondii to both recapitulate known interactions and discover new ones. Finally, I look for large-scale evidence of gene duplicates relocalizing to new cellular compartments in P. tetraurelia and S. cerevisiae using this new dataset and a previously generated one, respectively. I find thousands of pairs of duplicates which are differentially identified and display evidence for subcellular divergence, and this seems to be largely decoupled from large changes in protein sequence but are instead associated with indels in their N-terminal peptide. These findings support the use of high-throughput proteomic techniques to determine evidence of functional divergence of gene duplicates. Taken together, this works provides a deep characterization of one of the largest unicellular proteomes in nature.
ContributorsLicknack, Timothy James (Author) / Lynch, Michael (Thesis advisor) / Wideman, Jeremy (Committee member) / Chen, Julian (Committee member) / Taylor, Jay (Committee member) / Arizona State University (Publisher)
Created2022
187419-Thumbnail Image.png
Description
Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences

Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences of misfolded proteins and if they affect all cells equally or affect some cells more than others. To investigate cell subpopulations, I built and optimized a cutting-edge single-cell RNA sequencing platform (scRNAseq) for yeast. By using scRNAseq, I can study the expression variability of many genes (i.e. how the transcriptomes of single cells differ from one another). To induce misfolding and study how single cells deal with this stress, I use engineered strains with varying degrees of an orthogonal misfolded protein. When I computationally cluster the cells expressing misfolded proteins by their sequenced transcriptomes, I see more cells with the severely misfolded protein in subpopulations undergoing canonical stress responses. For example, I see these cells tend to overexpress chaperones, and upregulate mitochondrial biogenesis and transmembrane transport. Both of these are hallmarks of the “Generalized” or “Environmental Stress Response” (ESR) in yeast. Interestingly, I do not see all components of the ESR upregulated in all cells, which may suggest that the massive transcriptional changes characteristic of the ESR are an artifact of having defined the ESR in bulk studies. Instead, I see some cells activate chaperones, while others activate respiration in response to stress. Another intriguing finding is that growth supporting proteins, such as ribosomes, have particularly heterogeneous expression levels in cells expressing misfolded proteins. This suggests that these cells potentially reallocate their metabolic functions at the expense of growth but not all cells respond the same. In sum, by using my novel single-cell approach, I have gleaned new insights about how cells respond to stress. which can help me better understand diseased cells. These results also teach how cells contend with mutation, which commonly causes protein misfolding and is the raw material of evolution. My results are the first to explore single-cell transcriptional responses to protein misfolding and suggest that the toxicity from misfolded proteins may affect some cells’ transcriptomes differently than others.
ContributorsEder, Rachel (Author) / Geiler-Samerotte, Kerry (Thesis advisor) / Brettner, Leandra (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023
187319-Thumbnail Image.png
Description
Planococcus citri mealybugs are an incredibly unique species due to their nested endosymbiosis, in which Moranella endobia resides within Tremblaya princeps. These endosymbionts work together with their host to provide nutritional support throughout its life cycle and onto future offspring. Though what makes these endosymbionts even more interesting is that

Planococcus citri mealybugs are an incredibly unique species due to their nested endosymbiosis, in which Moranella endobia resides within Tremblaya princeps. These endosymbionts work together with their host to provide nutritional support throughout its life cycle and onto future offspring. Though what makes these endosymbionts even more interesting is that when viewed form a cell biological perspective, it becomes evident that they should have been exocytosed out of the host millions of years ago. One of the three membranes that surrounds Tremblaya, particularly the outermost vacuolar membrane, acts as the endosomal compartment around the bacteriome. In a traditional case of the endocytic cycle, the contents within the vacuole would be marked by the GTPase proteins Rab5 and Rab7 respectively until the fate of lysosomal digestion occurred. Though what is unique about the vacuolar membrane that surrounds Tremblaya is two things: first is that that membrane is lost and regained upon maternal transmission and secondly the endosymbionts within the membrane are not reaching their lysosomal fate, rather they are being passed down onto future generations. How these endosymbionts can redirect the endocytic pathway can possibly be explained by one of these four mechanisms: 1. Rabex-5 fails to recruit to the membrane of the early endosome, 2. Interruption of Rab7 activation by inhibiting membrane translocation of Ccz1, 3. Failure of the HOPS complex to bind to the late endosome, 4. Inhibition of translocation of ORP1L to the late endosome. Though the four mechanisms outlined above are very clearly regarding a cell biological process, they are not easily testable in a real-world setting. Thus, to adjust and account for this, the early and late endosomal marker proteins (Rab5 and Rab7) were used as the proteins of interest throughout immunofluorescence and western blot experimentation. These experiments revealed significant difficulties in working with commercially made antibodies but more importantly provided insight as to how is best to go forth with this research. In addition to this, qPCR experimentation and Rab7 epitope analysis did reveal that Rab5 and Rab7 are in fact key players in understanding how these endosymbionts are able to evade the endocytic cycle.
ContributorsAbdelsamad, Amanda Gamal (Author) / McCutcheon, John (Thesis advisor) / Wideman, Jeremy (Committee member) / Hu, Ke (Committee member) / Arizona State University (Publisher)
Created2023
Description
Traumatic injury to the central nervous or musculoskeletal system in traditional amniote models, such as mouse and chicken, is permanent with long-term physiological and functional effects. However, among amniotes, the ability to regrow complex, multi-tissue structures is unique to non-avian reptiles. Structural regeneration is extensively studied in lizards, with most

Traumatic injury to the central nervous or musculoskeletal system in traditional amniote models, such as mouse and chicken, is permanent with long-term physiological and functional effects. However, among amniotes, the ability to regrow complex, multi-tissue structures is unique to non-avian reptiles. Structural regeneration is extensively studied in lizards, with most species able to regrow a functional tail. The lizard regenerated tail includes the spinal cord, cartilage, de novo muscle, vasculature, and skin, and unlike mammals, these tissues can be replaced in lizards as adults. These studies focus on the events that occur before and after the tail regrowth phase, identifying conserved mechanisms that enable functional tail regeneration in the green anole lizard, Anolis carolinensis. An examination of coordinated interactions between peripheral nerves, Schwann cells, and skeletal muscle reveal that reformation of the lizard neuromuscular system is dependent upon developmental programs as well as those unique to the adult during late stages of regeneration. On the other hand, transcriptomic analysis of the early injury response identified many immunoregulatory genes that may be essential for inhibiting fibrosis and initiating regenerative programs. Lastly, an anatomical and histological study of regrown alligator tails reveal that regenerative capacity varies between different reptile groups, providing comparative opportunities within amniotes and across vertebrates. In order to identify mechanisms that limit regeneration, these cross-species analyses will be critical. Taken together, these studies serve as a foundation for future experimental work that will reveal the interplay between reparative and regenerative mechanisms in adult amniotes with translational implications for medical therapies.
ContributorsXu, Cindy (Author) / Kusumi, Kenro (Thesis advisor) / Newbern, Jason M (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Fisher, Rebecca E (Committee member) / Arizona State University (Publisher)
Created2020
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020
Description
The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are

The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are hemizygous for the X chromosome, whereas females have two X chromosome copies. Contributing to the sex differences in gene expression between males and females are the sex chromosomes, X and Y. Gene expression differences on the autosomes and the X chromosome between males (46, XY) and females (46, XX) may help inform on the mechanisms of sex differences in human health and disease. For example, XX females are more likely to suffer from autoimmune diseases, and genetic XY males are more likely to develop cancer. Characterizing sex-specific gene expression among human tissues will help inform the molecular mechanisms driving sex differences in human health and disease. This dissertation covers a range of critical aspects in gene expression. In chapter 1, I will introduce a method to align RNA-Seq reads to a sex chromosome complement informed reference genome that considers the X and Y chromosomes' shared evolutionary history. Using this approach, I show that more genes are called as sex differentially expressed in several human adult tissues compared to a default reference alignment. In chapter 2, I characterize gene expression in an early formed tissue, the human placenta. The placenta is the DNA of the developing fetus and is typically XY male or XX female. There are well-documented sex differences in pregnancy complications, yet, surprisingly, there is no observable sex difference in expression of innate immune genes, suggesting expression of these genes is conserved. In chapter 3, I investigate gene expression in breast cancer cell lines. Cancer arises in part due to the disruption of gene expression. Here I show 19 tumor suppressor genes become upregulated in response to a synthetic protein treatment. In chapter 4, I discuss gene and allele-specific expression in Nasonia jewel wasp. Chapter 4 is a replication and extension study and discusses the importance of reproducibility.
ContributorsOlney, Kimberly (Author) / Wilson, Melissa A (Thesis advisor) / Hinde, Katherine (Committee member) / Buetow, Kenneth (Committee member) / Banovich, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
190834-Thumbnail Image.png
Description
The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation

The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation of individual FOF1 were observed to measure transient dwells (TDs). TDs occur when the FO momentarily halts the ATP hydrolysis rotation by the F1-ATPase. The work presented here showed increasing TDs with decreasing pH, with calculated pKa values of 5.6 and 7.5 for wild-type (WT) Escherichia coli (E. coli) subunit-a proton input and output half-channels, respectively. This is consistent with the conclusion that the periplasmic proton half-channel is more easily protonated than the cytoplasmic half-channel. Mutation in one proton half-channel affected the pKa values of both half-channels, suggesting that protons flow through the FO motor via the Grotthuss mechanism. The data revealed that 36° stepping of the E. coli FO subunit-c ring during ATP synthesis consists of an 11° step caused by proton translocations between subunit-a and the c-ring, and a 25° step caused by the electrostatic interaction between the unprotonated c-subunit and the aR210 residue in subunit-a. The occurrence of TDs fit to the sum of three Gaussian curves, which suggested that the asymmetry between the FO and F1 motors play a role in the mechanism behind the FOF1 rotation. Replacing the inner (N-terminal) helix of E. coli c10-ring with sequences derived from c8 to c17-ring sequences showed expression and full assembly of FOF1. Decrease in anticipated c-ring size resulted in increased ATP synthesis activity, while increase in c-ring size resulted in decreased ATP synthesis activity, loss of Δψ-dependence to synthesize ATP, decreased ATP hydrolysis activity, and decreased ACMA quenching activity. Low levels of ATP synthesis by the c12 and c15-ring chimeras are consistent with the role of the asymmetry between the FO and F1 motors that affects ATP synthesis rotation. Lack of a major trend in succinate-dependent growth rates of the chimeric E. coli suggest cellular mechanisms that compensates for the c-ring modification.
ContributorsYanagisawa, Seiga (Author) / Frasch, Wayne D (Thesis advisor) / Misra, Rajeev (Committee member) / Redding, Kevin (Committee member) / Singharoy, Abhishek (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023