Matching Items (8)
Filtering by

Clear all filters

151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
152814-Thumbnail Image.png
Description
Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases,

Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases, such as cancer, cystic fibrosis, and acquired immunodeficiency (AIDS) already have gene therapy protocols that are currently in clinical trials. Finding a non-toxic and efficient gene transfer method has been a challenge. Viral vectors are effective at transgene delivery however potential for insertion mutagenesis and activation of immune responses raises concern. For this reason, non-viral vectors have been investigated as a safer alternative to viral-mediated gene delivery. Non-viral vectors are also easy to prepare and scalable, but are limited by low transgene delivery efficacies and high cytotoxicity at effective therapeutic dosages. Thus, there is a need for a non-toxic non-viral vector with high transgene efficacies. In addition to the hurdles in finding a material for gene delivery, large-scale production of pharmaceutical grade DNA for gene therapy is needed. Current methods can be labor intensive, time consuming, and use toxic chemicals. For this reason, an efficient and safe method to collect DNA is needed. One material that is currently being explored is the hydrogel. Hydrogels are a useful subclass of biomaterials, with a wide variety of applications. This class of biomaterials can carry up to a thousand times their weight in water, and are biocompatible. At smaller dimensions, referred to as micro- and nanogels, they are very useful for many biomedical applications because of their size and ability to swell. Based on a previously synthesized hydrogel, and due to the advantages of smaller dimension in biomedical applications, we have synthesized aminoglycoside antibiotic based nanogels and microgels. Microgels and nanogels were synthesized following a ring opening polymerization of epoxide-containing crosslinkers and polyamine-containing monomers. The nanogels were screened for their cytocompatibilities and transfection efficacies, and were compared to polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Nanogels demonstrated minimal to no toxicity to the cell line used in the study even at high concentrations. Due to the emerging need for large-scale production of DNA, microgels were evaluated for their binding capacity to plasmid DNA. Future work with the aminoglycoside antibiotic-based nanogels and microgels developed in this study will involve optimization of nanogels and microgels to facilitate in better transgene delivery and plasmid DNA binding, respectively.
ContributorsMallik, Amrita Amy (Author) / Rege, Kaushal (Thesis advisor) / Dai, Lennore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
150366-Thumbnail Image.png
Description
Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent of polystyrene oligomers (hPS) to soft templated mesoporous carbon films fabricated by cooperative assembly of poly(styrene-block-ethylene oxide) (SEO) with phenolic resin. To examine the impact of morphology, different compositions of amphiphilic triblock copolymer templates, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), are used to form two-dimensional hexagonal and cubic mesostructures. Lastly, the carbonization temperature provides a handle to tune the hydrophobicity of the film. These mesoporous films are then utilized to understand the uptake and release of a model drug Mitoxantrone dihydrochloride from nanostructured materials. The largest pore size (6nm) mesoporous carbon based on SEO exhibits the largest uptake (3.5μg/cm2); this is attributed to presence of larger internal volume compared to the other two films. In terms of release, a controlled response is observed for all films with the highest release for the 2nm cubic film (1.45 μg/cm2) after 15 days, but this is only 56 % of the drug loaded. Additionally, the surface hydrophobicity impacts the fraction of drug release with a decrease from 78% to 43%, as the films become more hydrophobic when carbonized at higher temperatures. This work provides a model system to understand how pore morphology, size and chemistry influence the drug loading and release for potential implant applications.
ContributorsLabiano, Alpha (Author) / Vogt, Bryan (Thesis advisor) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2011
156659-Thumbnail Image.png
Description
In the United States, 12% of women are typically diagnosed with breast cancer, where 20-30% of these cases are identified as Triple Negative Breast Cancer (TNBC). In the state of Arizona, 810 deaths occur due to breast cancer and more than 4,600 cases are diagnosed every year (American Cancer Society). The lack

In the United States, 12% of women are typically diagnosed with breast cancer, where 20-30% of these cases are identified as Triple Negative Breast Cancer (TNBC). In the state of Arizona, 810 deaths occur due to breast cancer and more than 4,600 cases are diagnosed every year (American Cancer Society). The lack of estrogen, progesterone, and HER2 receptors in TNBC makes discovery of targeted therapies further challenging. To tackle this issue, a novel multi-component drug vehicle is presented. Previously, we have shown that mitoxantrone, a DNA damaging drug, can sensitize TNBC cells to TRAIL, which is a protein that can selectively kill cancer cells. In this current study, we have formulated aminoglycoside-derived nanoparticles (liposomes) loaded with mitoxantrone, PARP inhibitors, for delivery to cancer cells. PARP inhibitors are helpful in preventing cancer cells from repairing their DNA following damage with other drugs (e.g. mitoxantrone). Various treatment liposome groups, consisting of lipid-containing polymers (lipopolymers) synthesized in our laboratory, were formulated and characterized for their size, surface charge, and stability. PARP inhibitors and treatment of cells for in-vitro and in-vivo experiments with these liposomes resulted in synergistic death of cancer cells. Finally, studies to evaluate the pre-clinical efficacy of these approaches using immuno-deficient mouse models of TNBC disease have been initiated.
ContributorsMuralikrishnan, Harini (Author) / Rege, Kaushal (Thesis advisor) / Holechek, Susan (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
154363-Thumbnail Image.png
Description
Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.
ContributorsGrandhi, Taraka Sai Pavan (Author) / Rege, Kaushal (Thesis advisor) / Meldrum, Deirdre R (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Caplan, Michael (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2016
Description
Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular

Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular assays, they have a colossal limitation - they do not adequately consider the natural three-dimensional (3D) microenvironment of the cells. As a result, they sometimes provide misleading statistics. Therefore, it is important to develop a 3D model that predicts cellular behaviors and their interaction with neighboring cells and extracellular matrix (ECM) in a more realistic manner. In recent biomedical research, various platforms have been modeled to generate 3D prototypes of tissues, spheroids, in vitro that could allow the study of cellular responses resembling in vivo environments, such as matrices, scaffolds, and devices. But most of these platforms have drawbacks such as lack of spheroid size control, low yield, or high cost associated with them. On the other hand, Amikagel is a low cost, high-fidelity platform that can facilitate the convenient generation of tumor and stem cell spheroids. Furthermore, Amikabeads are aminoglycoside-derived hydrogel microbeads derived from the same monomers as Amikagel. They are a versatile platform with several chemical groups that can be exploited for encapsulating the spheroids and investigating the delivery of bioactive compounds to the cells. This thesis is focused on engineering novel 3D tumor and stem cell models generated on Amikagel and encapsulated in Amikabeads for proximal delivery of bioactive compounds and applications in regenerative medicine.
ContributorsNanda, Tanya (Author) / Rege, Kaushal (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Weaver, Jessica (Committee member) / Arizona State University (Publisher)
Created2020