Matching Items (3)
Filtering by

Clear all filters

135576-Thumbnail Image.png
Description
Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac

Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac tissue constructs have suffered from electrically insulated matrices and low cell retention. To address these drawbacks, we fabricated micropatterned hybrid hydrogel constructs (uniaxial microgrooves with 50 µm with) using a photocrosslinkable gelatin methacrylate (GelMA) hydrogel incorporated with gold nanorods (GNRs). The electrical impedance results revealed a lower impedance in the GelMA-GNR constructs versus the pure GelMA constructs. Superior electrical conductivity of GelMA-GNR hydrogels (due to incorporation of GNRs) enabled the hybrid tissue constructs to be externally stimulated using a pulse generator. Furthermore, GelMA-GNR tissue hydrogels were tested to investigate the biological characteristics of cultured cardiomyocytes. The F-actin fiber analysis results (area coverage and alignment indices) revealed higher directed (uniaxial) cytoskeleton organization of cardiac cells cultured on the GelMA-GNR hydrogel constructs in comparison to pure GelMA. Considerable increase in the coverage area of cardiac-specific markers (sarcomeric α-actinin and connexin 43) were observed on the GelMA-GNR hybrid constructs compared to pure GelMA hydrogels. Despite substantial dissimilarities in cell organization, both pure GelMA and hybrid GelMA-GNR hydrogel constructs provided a suitable microenvironment for synchronous beating of cardiomyocytes.
ContributorsMoore, Nathan Allen (Author) / Nikkhah, Mehdi (Thesis director) / Smith, Barbara (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by environmental concerns with climate change, rising geopolitical instability, and population growth projections, where farm-grown food has now become a growing national security issue. Notwithstanding its potential, in addition to the necessary technological innovation and economic scalability, the market success of cellular agriculture will depend greatly on regulatory oversight by multiple government agencies without which it can cause undue harm to individuals, populations, and the environment. Thus, it is critical for those appropriate United States governing bodies to ensure that the technology being developed is both safe and of an acceptable quality for human consumption and has no adverse environmental impact. As such, animal foods, derived from farms, previously regulated almost exclusively by the United States Department of Agriculture (USDA) are now being regulated under a joint formal agreement between the US Food and Drug Administration (US FDA) and the USDA if derived from the lab, i.e., lab-grown animal foods. The main reason for joint oversight between the FDA and the USDA is that the FDA has developed the in-house expertise to oversee primary cell harvesting and cell storage, as well as, cell growth and differentiation for the development of 3D-engineered tissues intended for tissue and organ replacement for the emerging field of regenerative medicine. As such, the FDA has been given the authority to oversee the ‘front end’ of lab-grown food processes which relies on the very same processes utilized in engineered human tissues to produce food-grade engineered tissues. Oversight then transitions to the USDA-FSIS (Food Safety and Inspection Service) during the harvesting stage of the cell culture process. The USDA-FSIS then oversees the further production and labeling of these products. Included in the agreement is the understanding that both bodies are responsible for communicating necessary information to each other and collaboratively developing new regulatory actions as needed. However, there currently lacks clarity on some topics regarding certain legal, ethical, and scientific issues. Lab-grown meat products require more extensive regulation than farm-grown animal food products to ensure that they are safe and nutritious for consumption. To do this, CFSAN can create new classes of lab-grown foods, such as ‘lab-grown USDA foods,’ ‘lab-grown non-USDA foods,’ ‘lab-grown extinct foods,’ ‘lab-grown human food tissues,’ and ‘medically activated lab-grown foods.’

ContributorsBanen, Samuel (Author) / Pizziconi, Vincent (Thesis director) / Feigal, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132721-Thumbnail Image.png
Description
Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control

Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control over biomolecule binding through a photopolymerization process. With this, biomimetic gradients can be produced to model a variety of tissue interfaces. To produce these patterns, a gradient mechanism was developed to function in tandem with a syringe pump. A conversion equation was derived to calculate a panel speed from the volumetric flow rate setting on the pump. Seven speeds were used to produce fluorophore gradients on the surface of NorHA hydrogels to assess changes in the length and slope of the gradient. The results indicated a strong positive linear correlation between the speed of the panel and the length of the gradient as well as a strong negative correlation between the speed of the panel and the slope of the gradient. Additionally, the mechanism was able to successfully produce several other types of gradients including multiregional, dual, and triregional.
ContributorsSogge, Amber (Author) / Holloway, Julianne (Thesis director) / Stabenfeldt, Sarah (Committee member) / Fumasi, Fallon (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05