Matching Items (4)
Filtering by

Clear all filters

153180-Thumbnail Image.png
Description
This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy.

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion of the silver-gold alloy, the less noble metal i.e. silver is removed from the system leaving behind a nanoporous gold (NPG) layer. In the case of polycrystalline material, this corrosion process proceeds deeper along the grain boundary than the matrix grain. All of the cracks with apparent penetration beyond the corroded (dealloyed) layer are intergranular. Our aim was to study the crack penetration depth along the grain boundary to ascertain whether the penetration occurs past the grain-boundary dealloyed depth. EDS and imaging in high-resolution aberration corrected scanning transmission electron microscope (STEM) and atom probe tomography (APT) have been used to evaluate the grain boundary corrosion depth.

The mechanical properties of monolithic NPG are also studied. The motivation behind this is two-fold. The crack injection depth depends on the speed of the crack formed in the nanoporous layer, which in turn depends on the mechanical properties of the NPG. Also NPG has potential applications in actuation, sensing and catalysis. The measured value of the Young's modulus of NPG with 40 nm ligament size and 28% density was ~ 2.5 GPa and the Poisson's ratio was ~ 0.20. The fracture stress was observed to be ~ 11-13 MPa. There was no significant change observed between these mechanical properties on oxidation of NPG at 1.4 V. The fracture toughness value for the NPG was ~ 10 J/m2. Also dynamic fracture tests showed that the NPG is capable of supporting crack velocities ~ 100 - 180 m/s.
ContributorsBadwe, Nilesh (Author) / Sieradzki, Karl (Thesis advisor) / Peralta, Pedro (Committee member) / Oswald, Jay (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2014
153182-Thumbnail Image.png
Description
Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O,

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
ContributorsBhatia, Mehul Anoopkumar (Author) / Solanki, Kiran N (Thesis advisor) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Neithalath, Narayanan (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014
155567-Thumbnail Image.png
Description
The use of solar energy to produce power has increased substantially in the past few decades. In an attempt to provide uninterrupted solar power, production plants may find themselves having to operate the systems at temperatures higher than the operational capacity of the materials used in many of their components,

The use of solar energy to produce power has increased substantially in the past few decades. In an attempt to provide uninterrupted solar power, production plants may find themselves having to operate the systems at temperatures higher than the operational capacity of the materials used in many of their components, which affects the microstructural and mechanical properties of those materials. Failures in components that have been exposed to these excessive temperatures have been observed during operations in the turbine used by AORA Solar Ltd. A particular component of interest was made of a material similar to the Ni-based superalloy Inconel 718 (IN 718), which was observed to have damage that is believed to have been initiated by Foreign Object Damage (FOD) and worsened by the high temperatures in the turbine. The potential links among the observed failure, FOD and the high temperatures of operation are investigated in this study.

IN718 is a precipitation hardened nickel superalloy with resistance to oxidation and ability to withstand high stresses over a wide range of temperatures. Several studies have been conducted to understand IN 718 tensile and fatigue properties at elevated temperatures (600- 950°C). However, this study focuses on understanding the behavior of IN718 with FOD induced by a stream of 50 μm Alumina particles at a velocity of 200 m/s. under high cycle fatigue at an elevated temperature of 1050 °C. Tensile tests were conducted for both as-received and heat treated (1050 °C in air for 8hrs) samples at room and high temperature. Fatigue tests were performed at heat treated samples at 1050 °C for samples with and without ablation. The test conditions were as similar as possible to the conditions in the AORA turbine. The results of the study provide an insight into tensile properties, fatigue properties and FOD. The results indicated a reduction in fatigue life for the samples with ablation damage, where crack nucleation occurred either at the edge or inside the ablation region and multisite cracking was observed under far field stresses that were the same than for pristine samples, which showed single cracks. Fracture surfaces indicate intergranular fracture, with the presence of secondary cracks and a lack of typical fatigue features, e.g., beach marks which was attributed to environmental effects and creep.
ContributorsShenoy, Sneha (Author) / Peralta, Pedro (Thesis advisor) / Solanki, Kiran (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2017
155202-Thumbnail Image.png
Description
A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM)

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the dislocation glide planes without any explicit treatment of the interface geometry which provides a convenient and an appealing means for describing the dislocation. A method for estimating the Peach-Koehler force by the domain form of J-integral is considered. The convergence and accuracy of the method are studied for an edge dislocation interacting with a free surface where analytical solutions are available. The force converges to the exact solution at an optimal rate for linear finite elements. The applicability of the method to dislocation interactions with inclusions is illustrated with a system of Aluminium matrix containing Aluminium-copper precipitates. The effect of size, shape and orientation of the inclusions on an edge dislocation for a difference in stiffness and coefficient of thermal expansion of the inclusions and matrix is considered. The force on the dislocation due to a hard inclusion increased by 8% in approaching the sharp corners of a square inclusion than a circular inclusion of equal area. The dislocation experienced 24% more force in moving towards the edges of a square shaped inclusion than towards its centre. When the areas of the inclusions were halved, 30% less force was exerted on the dislocation. This method was used to analyse interfaces with mismatch strains. Introducing eigenstrains equal to 0.004 to the elastic mismatch increased the force by 15 times for a circular inclusion. The energy needed to move an edge dislocation through a domain filled with circular inclusions is 4% more than that needed for a domain with square shaped inclusions.
ContributorsVeeresh, Pawan (Author) / Oswald, Jay (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016