Matching Items (6)
134673-Thumbnail Image.png
Description
This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with the wing geometry fixed, to match a Sears-Haack distribution. Following the optimization of the area, the tool collects geometric data for analysis using legacy performance tools. This analysis revealed that performing the optimization yielded an average reduction in wave drag of 25% across a variety of Mach numbers on two different starting geometries. The goal of this project is to integrate this optimization tool into a larger trade study tool as it will allow for higher fidelity modeling as well as large improvements in transonic and supersonic drag performance.
ContributorsLeader, Robert William (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Chuck Yeager made his historic flight to break the sound barrier in 1947 flying the Bell X-1, an aircraft designed by the National Advisory Committee for Aeronautics and the US military to conduct research on supersonic travel. From that moment forward, aviation has been focused on harnessing that energy for

Chuck Yeager made his historic flight to break the sound barrier in 1947 flying the Bell X-1, an aircraft designed by the National Advisory Committee for Aeronautics and the US military to conduct research on supersonic travel. From that moment forward, aviation has been focused on harnessing that energy for practical application. The United States government would go on to commission an aircraft that operated faster than the speed of sound and higher than radar detectability in order to perform various cold war missions at a critical phase of history- one of the most notorious aircraft to come out of this supersonic fever was the Lockheed SR-71 Blackbird. In the last century, most research on supersonic speed has been conducted in a military setting, with some notable successes in civil operations, such as the Concorde, the Tupolev Tu-144, and more recently with the development of the Boom Overture aircraft. The engineering that went into the creation of the Blackbird provided groundbreaking innovation throughout the designing and testing process that set it apart from other aircraft of its kind and continues to inspire aerospace engineers working on the high-speed travel of our future.
ContributorsKaneps, Linda (Author) / Hampshire, Michael (Thesis director) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor)
Created2024-05
ContributorsKaneps, Linda (Author) / Hampshire, Michael (Thesis director) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor)
Created2024-05
ContributorsKaneps, Linda (Author) / Hampshire, Michael (Thesis director) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Aviation Programs (Contributor)
Created2024-05
158753-Thumbnail Image.png
Description
The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into

The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into detailed
volume grid computational fluid dynamics (CFD), in which the physics of supersonic
flow are modeled directly but at a high computational cost and thus an incredibly long
design process. Classical aerodynamics experts have published work describing a process
which can be followed which might bypass the need for detailed CFD altogether.

This work outlines how successfully a simple vortex lattice panel method CFDcode can be used in the design process for a Mach 1.3 cruise speed airline wing concept.
Specifically, the success of the wing design is measured in its ability to operate subcritically (i.e. free of shock waves) even in a free stream flow which is faster than the
speed of sound. By using a modified version of Simple Sweep Theory, design goals are
described almost entirely based on defined critical pressure coefficients and critical Mach
numbers. The marks of a well-designed wing are discussed in depth and how these traits
will naturally lend themselves to a well-suited supersonic wing.

Unfortunately, inconsistencies with the published work are revealed by detailedCFD validation runs to be extensive and large in magnitude. These inconsistencies likely
have roots in several concepts related to supersonic compressible flow which are
explored in detail. The conclusion is made that the theory referenced in this work by the
classical aerodynamicists is incorrect and/or incomplete. The true explanation for the
perplexing shock wave phenomenon observed certainly lies in some convolution of the
factors discussed in this thesis. Much work can still be performed in the way of creating
an empirical model for shock wave formation across a highly swept wing with blunt
leading-edge airfoils.
ContributorsKurus, Noah John (Author) / Takahashi, Timothy (Thesis advisor) / Benson, David (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020
131442-Thumbnail Image.png
Description
The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential

The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential which drives the flow. The nozzle was designed using method of characteristics (MOC) and a boundary layer analysis experimental proven on supersonic wind tunnels [5]. The diffuser was designed using the unique design features of this wind tunnel in combination with equations from Pope [7]. The pressure differential is achieved via a vacuum chamber behind the diffuser creating a pressure differential between the ambient air and the low pressure in the tank. The run time of the wind tunnel depends on the initial pressure of the vacuum tank and the volume. However, the volume of the tank has a greater influence on the run time. The volume of the tank is not specified as the largest tank feasible should be used to allow the longest run time. The run time for different volumes is given. Another method of extending the run duration is added vacuum pumps to the vacuum chamber. If these pumps can move a sufficient mass out of the vacuum chamber, the run time can be significantly extended. The mounting design addresses the loading requirements which is closely related to the accuracy of the data. The mounting mechanism is attached to the rear of the model to minimize shockwave interference and maximize the structural integrity along the direction with the highest loading. This mechanism is then mounted to the bottom of the wind tunnel for structural rigidity and ease of access.
ContributorsWall, Isaiah Edward (Author) / Wells, Valana (Thesis director) / Kshitij, Abhinav (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05