Matching Items (4)
Filtering by

Clear all filters

133653-Thumbnail Image.png
Description
In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A

In industrial applications, rotary drums are poorly understood and preform suboptimally when used to process particulates. In order to better understand how these drums work, a statistical experiment was designed to measure the effects of the fill level and rotation rate on the final temperature of the particle bed. A steel rotary drum was set up to be headed by three external heat guns, simulating the conditions under which standard rotary drums are operated. By measuring the bed temperature at steady state, and recording the combination of factors in each run, a regression analysis was run to determine the factor's effects. Fill level was seen to have a small positive effect, rotation rate was seen to have a small negative effect, and the interaction of the two was shown to have a large positive effect. This led the team to conclude that the flow profile of the bed may be the most important factor in heat transfer, and that further research should be done to isolate and study the effect of the flow profile.
ContributorsBeairsto, Cole James (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133976-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of pharmaceuticals, cement, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to tremendous energy savings on a global scale. This study investigates the effects of drum fill level and rotation rate on the steady-state average particle bed temperature. 3 mm silica beads and a stainless steel rotary drum were used at fill levels ranging from 10 \u2014 25 % and rotation rates from 2 \u2014 10 rpm. Four heat guns were used to heat the system via conduction and convection, and an infrared camera was used to record temperature data. A three-level, two-factor, full-factorial design of experiments was employed to determine the effects of each factor on the steady-state average bed temperature. Low fill level and high rotation rate resulted in higher steady-state average bed temperatures. A quantitative model showed that rotation rate had a larger impact on the steady-state bed temperature than fill level.
ContributorsBoepple, Brandon Richard (Author) / Emady, Heather (Thesis director) / Adepu, Manogna (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148451-Thumbnail Image.png
Description

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU;

Rotary drums are tools used extensively in various prominent industries for their utility in heating and transporting particulate products. These processes are often inefficient and studies on heat transfer in rotary drums will reduce energy consumption as operating parameters are optimized. Research on this subject has been ongoing at ASU; however, the design of the rotary drum used in these studies is restrictive and experiments using radiation heat transfer have not been possible.<br/><br/>This study focuses on recounting the steps taken to upgrade the rotary drum setup and detailing the recommended procedure for experimental tests using radiant heat transfer upon completed construction of the new setup. To develop an improved rotary drum setup, flaws in the original design were analyzed and resolved. This process resulted in a redesigned drum heating system, an altered thinner drum, and a larger drum box. The recommended procedure for radiant heat transfer tests is focused on determining how particle size, drum fill level, and drum rotation rate impact the radiant heat transfer rate.

ContributorsMiller, Erik R (Author) / Emady, Heather (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Rotary drums are used to manufacture pharmaceuticals, cement, food, and other particulate products because of their high heat and mass transfer rates. These processes are governed by particle parameters, such as particle size, particle distribution, and shape, and operating parameters, such as rotation rate and fill level. Enormous energy savings

Rotary drums are used to manufacture pharmaceuticals, cement, food, and other particulate products because of their high heat and mass transfer rates. These processes are governed by particle parameters, such as particle size, particle distribution, and shape, and operating parameters, such as rotation rate and fill level. Enormous energy savings are possible with further research in rotary drums due to potential increases in operating efficiency. This study investigates the drum rotation rate on particle bed temperature at temperatures above 500 °C to see the role that radiation heat transfer plays in this process. 2 mm silica beads and a stainless steel rotary drum were used at a fill level of 25% with rotation rates from 2-10 rpm. A new setup and procedure were developed using heating coils and an IR camera to reach high temperatures. The inner drum wall temperature exceeded the outer drum wall temperature because the steel transmitted more heat into the drum at higher temperatures. Although it was unclear whether the heat transfer rate was affected by the increasing rotation rate, the highest final average particle temperature was obtained at 5 rpm. The particle bed temperature distribution narrowed as the rotation rate increased because, at higher rotation rates, more particles are in contact with the drum wall than at lower rotation rates.

ContributorsTronstad, Joel (Author) / Emady, Heather (Thesis director) / Holloway, Julianne (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05