Matching Items (4)
Filtering by

Clear all filters

152132-Thumbnail Image.png
Description
The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there are societal and environmental factors that make mesic landscaping, including shade trees and grass lawns, a common choice for residential yards. In either case, there is potential for water savings through irrigation schedules based on fluxes affecting soil moisture in the active plant rooting zone. In this thesis, a point-scale model of soil moisture dynamics was applied to two urban sites in the Phoenix area: one with xeric landscaping, and one with mesic. The model was calibrated to observed soil moisture data from irrigated and non-irrigated sensors, with local daily precipitation and potential evapotranspiration records as model forcing. Simulations were then conducted to investigate effects of irrigation scheduling, plant stress parameters, and precipitation variability on soil moisture dynamics, water balance partitioning, and plant water stress. Results indicated a substantial difference in soil water storage capacity at the two sites, which affected sensitivity to irrigation scenarios. Seasonal variation was critical in avoiding unproductive water losses at the xeric site, and allowed for small water savings at the mesic site by maintaining mild levels of plant stress. The model was also used to determine minimum annual irrigation required to achieve specified levels of plant stress at each site using long-term meteorological records. While the xeric site showed greater potential for water savings, a bimodal schedule consisting of low winter and summer irrigation was identified as a means to conserve water at both sites, with moderate levels of plant water stress. For lower stress levels, potential water savings were found by fixing irrigation depth and seasonally varying the irrigation interval, consistent with municipal recommendations in the Phoenix metropolitan area. These results provide a deeper understanding of the ecohydrologic differences between the two types of landscape treatments, and can assist water and landscape managers in identifying opportunities for water savings in desert urban areas.
ContributorsVolo, Thomas J (Author) / Vivoni, Enrique R (Thesis advisor) / Ruddell, Benjamin L (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2013
161630-Thumbnail Image.png
Description
There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve

There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve outdoor irrigation management. With the goal of reducing outdoor water use and advancing the general knowledge of water fluxes in urban parks, this study explores water conservation opportunities in an arid city through observations and modeling.Most urban parks in Phoenix consist of a mosaic of turfgrass and trees which receive scheduled maintenance, fertilization and watering through sprinkler or flood irrigation. In this study, the effects that different watering practices, turfgrass management and soil conditions have on soil moisture observations in urban parks are evaluated. Soil moisture stations were deployed at three parks with stations at control plots with no compost application and compost treated sites with either a once or twice per year application instead of traditional fertilizer. An eddy covariance system was installed at a park to help quantify water losses and water, energy and carbon fluxes between the turfgrass and atmosphere. Additional meteorological observations are provided through a network of weather stations. The assessment covers over one year of observations, including the period of turfgrass growth in the warm season, and a period of dormancy during the cool season. The observations were used to setup and test a plot-scale soil water balance model to simulate changes in daily soil moisture in response to irrigation, precipitation and evapotranspiration demand for each park. Combining modeling and observations of climate-soil-vegetation processes, I provide guidance on irrigation schedules and management that could help minimize water losses while supporting turfgrass health in desert urban parks. The irrigation scenarios suggest that water savings of at least 18% can be achieved at the three sites. While the application of compost treatment to study plots did not show clear improvements in soil water retention when compared to the control plots, this study shows that water conservation can be promoted while maintaining low plant water stress.
ContributorsKindler, Mercedes (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2021
153966-Thumbnail Image.png
Description
Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.
ContributorsWhitney, Kristen M (Author) / Vivoni, Enrique R (Thesis advisor) / Farmer, Jack D (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2015
141426-Thumbnail Image.png
Description

Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs

Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area.

Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment – anthropogenic heating – is an essential element toward continued progress in urban climate assessment.

ContributorsSailor, David (Author) / Georgescu, Matei (Author) / Milne, Jeffrey M. (Author) / Hart, Melissa A. (Author)
Created2015-07-17