Matching Items (3)
Filtering by

Clear all filters

149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150827-Thumbnail Image.png
Description
In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.
ContributorsWu, Ruoyu (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2012
135099-Thumbnail Image.png
Description
Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem

Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem to be either unaware of it, or unconcerned by it. This has negative implications for the future of privacy, particularly as the idea of smart home technology becomes a reality. If this is what privacy looks like now, with only one major type of smart device on the market, what will the future hold, when the smart home systems come into play. In order to examine this question, I investigated how much awareness/knowledge smartphone users of a specific demographic (millennials aged 18-25) knew about their smartphone's data and where it goes. I wanted three questions answered: - For what purposes do millennials use their smartphones? - What do they know about smartphone privacy and security? - How will this affect the future of privacy? To accomplish this, I gathered information using a distributed survey to millennials attending Arizona State University. Using statistical analysis, I exposed trends for this demographic, discovering that there isn't a lack of knowledge among millennials; most are aware that smartphone apps can collect and share data and many of the participants are not comfortable with the current state of smartphone privacy. However, more than half of the study participants indicated that they never read an app's Terms of Service. Due to the nature of the privacy vs. convenience argument, users will willingly agree to let apps take their personal in- formation, since they don't want to give up the convenience.
ContributorsJones, Scott Spenser (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12