Matching Items (4)
Filtering by

Clear all filters

150688-Thumbnail Image.png
Description
Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical

Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical OAE measurements, such as the restricted frequency range, low efficiency and inaccurate calibration. In this dissertation project, a new method of OAE measurement which used a swept tone to evoke the stimulus frequency OAEs (SFOAEs) was developed to overcome the limitations of current methods. In addition, an in-situ calibration was applied to equalize the spectral level of the swept-tone stimulus at the tympanic membrane (TM). With this method, SFOAEs could be recorded with high resolution over a wide frequency range within one or two minutes. Two experiments were conducted to verify the accuracy of the in-situ calibration and to test the performance of the swept-tone SFOAEs. In experiment I, the calibration of the TM sound pressure was verified in both acoustic cavities and real ears by using a second probe microphone. In addition, the benefits of the in-situ calibration were investigated by measuring OAEs under different calibration conditions. Results showed that the TM pressure could be predicted correctly, and the in-situ calibration provided the most reliable results in OAE measurements. In experiment II, a three-interval paradigm with a tracking-filter technique was used to record the swept-tone SFOAEs in 20 normal-hearing subjects. The test-retest reliability of the swept-tone SFOAEs was examined using a repeated-measure design under various stimulus levels and durations. The accuracy of the swept-tone method was evaluated by comparisons with a standard method using discrete pure tones. Results showed that SFOAEs could be reliably and accurately measured with the swept-tone method. Comparing with the pure-tone approach, the swept-tone method showed significantly improved efficiency. The swept-tone SFOAEs with in-situ calibration may be an alternative of current clinical OAE measurements for more detailed evaluation of inner ear function and accurate diagnosis.
ContributorsChen, Shixiong (Author) / Bian, Lin (Thesis advisor) / Yost, William (Committee member) / Azuma, Tamiko (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2012
137094-Thumbnail Image.png
Description
Tempo control is a crucial part of musicianship that can provide an obstacle for novice musicians. The current study examines why novice percussionists increase their playing tempo when they increase their loudness (in music, loudness is referred to as dynamics). This study tested five hypotheses: 1) As actual tempo changes,

Tempo control is a crucial part of musicianship that can provide an obstacle for novice musicians. The current study examines why novice percussionists increase their playing tempo when they increase their loudness (in music, loudness is referred to as dynamics). This study tested five hypotheses: 1) As actual tempo changes, listeners perceive that the tempo is changing; 2) There is a perceptual bias to perceive increases in acoustic intensity as also increasing in tempo; 3) All individuals, regardless of percussion experience, display the bias described in hypothesis 2; 4) Unskilled or non-percussionists increase or decrease produced tempo as they respectively increase or decrease loudness; and 5) Skilled percussionist produce less change in tempo due to changes in loudness than non-percussionists. In Experiment 1, percussionists and non-percussionists listened to metronome samples that gradually change in intensity and/or tempo. Participants identified the direction and size of their perceived tempo change using a computer mouse. In Experiment 2, both groups of participants produced various tempo and dynamic changes on a drum pad. Our findings support that both percussionists and non-percussionists, to some extent, display a perceptual bias to perceive tempo changes as a function of intensity changes. We also found that non-percussionists altered their tempo as a function of changing dynamic levels, whereas percussionists did not. Overall, our findings support that listeners tend to experience some integrality between perceptual dimensions of perceived tempo and loudness. Dimensional integration also persists when playing percussion instruments though experience with percussion instruments reduces this effect.
ContributorsJohnson, Adam Gregory (Author) / McBeath, Michael (Thesis director) / Glenberg, Arthur (Committee member) / Yost, William (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2014-05
137168-Thumbnail Image.png
Description
Sport is a widespread phenomenon across human cultures and history. Unfortunately, positive emotions in sport have been long vaguely characterized as happy or pleasant, or ignored altogether. Recent emotion research has taken a differentiated approach, however, suggesting there are distinct positive emotions with diverse implications for behavior. The present study

Sport is a widespread phenomenon across human cultures and history. Unfortunately, positive emotions in sport have been long vaguely characterized as happy or pleasant, or ignored altogether. Recent emotion research has taken a differentiated approach, however, suggesting there are distinct positive emotions with diverse implications for behavior. The present study applied this evolutionarily informed approach in the context of sport to examine which positive emotions are associated with play. It was hypothesized that pride, amusement, and enthusiasm, but not contentment or awe, would increase in Ultimate Frisbee players during a practice scrimmage. Further, it was hypothesized that increases in pride and amusement during practice would be differentially associated with sport outcomes, including performance (scores, assists, and defenses), subjective social connectedness, attributions of success, and attitudes toward the importance of practice. It was found that all positive emotions decreased during practice. It was also found that increases in pride were associated with more scores and greater social connectedness, whereas increases in amusement were associated with more assists. The present study was one of the first to examine change in positive emotions during play and to relate them to specific performance outcomes. Future studies should expand to determine which came first: emotion or performance.
ContributorsKuna, Jacob Anthony (Author) / Shiota, Michelle (Thesis director) / Glenberg, Arthur (Committee member) / Danvers, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2014-05
134779-Thumbnail Image.png
Description
Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between

Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between pitch perception associated with the fundamental frequency (F0) and sharpness perception associated with the spectral slope of harmonic complex tones in normal hearing (NH) listeners and cochlear implant (CI) users. Pitch and sharpness ranking was measured without changes in the non-target dimension (Experiment 1), with different amounts of unrelated changes in the non-target dimension (Experiment 2), and with congruent/incongruent changes of similar perceptual salience in the non-target dimension (Experiment 3). The results showed that CI users had significantly worse pitch and sharpness ranking thresholds than NH listeners. Pitch and sharpness perception had symmetric interactions in NH listeners. However, for CI users, spectral slope changes significantly affected pitch ranking, while F0 changes had no significant effect on sharpness ranking. CI users' pitch ranking sensitivity was significantly better with congruent than with incongruent spectral slope changes. These results have important implications for CI processing strategies to better transmit pitch and timbre cues to CI users.
ContributorsSoslowsky, Samara Miranda (Author) / Luo, Xin (Thesis director) / Yost, William (Committee member) / Dorman, Michael (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12